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1 Introduction

The aim of our article is the existence of bounded weak solutions to the Robin problem for an
elliptic quasi-linear second-order equation with the variable p(x)-Laplacian in the Lipschitz
bounded n-dimensional domain. Boundary value problems for elliptic second order equa-
tions with a non-standard growth in function spaces with variable exponents have been an
active investigations in recent years. We refer to [16] for an overview. Differential equations
with variable exponents-growth conditions arise from the nonlinear elasticity theory, elec-
trorheological fluids, etc. There are many essential differences between the variable exponent
problems and the constant exponent problems. In the variable exponent problems, many sin-
gular phenomena occurred and many special questions were raised. V. Zhikov [26] has gave
examples of the Lavrentiev phenomenon for the variational problems with variable exponent.

Most of the works devoted to the quasi-linear elliptic second-order equations with the
variable p(x)-Laplacian refers to the Dirichlet problem in smooth bounded domains (see [16]).
In [1, 2, 8, 9, 18] the Robin problem for such equations has been considered, but in smooth
domains only. What is more, in these works the lower order terms depend only on (x, u) and
do not depend on |∇u|. A problem with a lower order term that does not depend on |∇u| in
a non-smooth domain has been recently studied in [7]. Our recent works [4, 5] are devoted to
the Robin problem in a cone for such equations with a singular p(x)-power gradient lower
order term.
BEmail: mborsuk40@gmail.com
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The Robin boundary conditions appear in the solving Sturm–Liouville problems which are
used in many contexts of science and engineering: for example, in electromagnetic problems,
in heat transfer problems and for convection-diffusion equations (Fick’s law of diffusion).

The Robin problem plays a major role in the study of reflected shocks in transonic flow.
Important applications of this problem is the capillary problem.

We shall investigate the existence of bounded weak solutions of the Robin problem:{
−4p(x)u + b(x, u,∇u) = f (x), x ∈ G,

|∇u|p(x)−2 ∂u
∂−→n + γ

|x|p(x)−1 u|u|p(x)−2 = 0, x ∈ ∂G,
(RQL)

where G ∈ C0,1 is a bounded domain in Rn with the boundary ∂G, containing a conical point
in the origin O, γ = const > 0 and

4p(x)u ≡ div
(
|∇u|p(x)−2∇u

)
. (1.1)

We shall work under the following assumptions:

(i) 1 < p− ≤ p(x) ≤ p+ < n, ∀x ∈ G;

(ii) p ∈ C0,1(G);

(iii) b : G×Rn+1 ⇒ R is a Carathéodory function (b ∈ CAR) satisfying for almost all x ∈ G
and for all (u, ξ) ∈ Rn+1, the following inequalities:

(iii)a |b(x, u, ξ)| ≤ b1

(
b0(x) + |u(x)|q0(x) + |ξ|q1(x)

)
, where b1 = const ≥ 0,

b0 ∈ Lq∗(x)(G),
1

q∗(x)
+

1
p∗(x)

= 1, p∗(x) =
np(x)

n− p(x)
;

q0(x) < p∗(x)− 1, q1(x) < p(x)− 1 +
p(x)

n
;

(iii)b ub(x, u, ξ) ≥ |u|p(x) for |u| > 1;

(iv) f ∈ Lp′(x)(G), 1
p′(x) +

1
p(x)

= 1.

We shall use the space M(G) : it is the set of all measurable and bounded almost everywhere
in G functions u(x) with the norm

‖u‖ = vrai max
x∈G

|u(x)| = inf
meas E=0

{
sup

x∈G\E
|u(x)|

}
.

The convergence in M(G) is the uniform convergence almost everywhere.

Definition 1.1. The function u is called a bounded weak solution of problem (RQL) provided
that u ∈ Vp(x)(G) ≡W1,p(x)(G) ∩M(G) and satisfies the integral identity∫

G

〈
|∇u(x)|p(x)−2∇u(x)∇η(x) + b (x, u(x),∇u(x)) η(x)

〉
dx

+ γ
∫

∂G
|x|1−p(x)u(x)|u(x)|p(x)−2η(x)dS =

∫
G

f (x)η(x)dx (II)

for all η ∈ Vp(x)(G).

The main result is the following statement.

Theorem 1.2. Let the assumptions (i)–(iv) be satisfied. Then problem (RQL) has at least one bounded
weak solution.
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2 Preliminaries

At first, we recall some theories on variable exponent Sobolev space W1,p(x)(G) (we refer to
[3,10,14,17,19–24]). Let G be an open subset of Rn and let p : G → R be a measurable function
satisfying condition (i). The variable exponent Lebesgue space Lp(x)(G) is defined by

Lp(x)(G) =

{
u : G → R is measurable, Ap(·)(u) :=

∫
G
|u(x)|p(x)dx < ∞

}
with the norm |u|p(x) = inf

{
λ > 0 : Ap(·)

( u
λ

)
≤ 1

}
.

Proposition 2.1. The following inequalities hold (see e.g. [3, (15)], [10, Lemma 3.2.5]):

min
(
|u|p−p(·), |u|

p+
p(·)

)
≤ Ap(·)(u) ≤ max

(
|u|p−p(·), |u|

p+
p(·)

)
; (2.1)

min
(

A
1

p−
p(·)(u), A

1
p+
p(·)(u)

)
≤ |u|p(·) ≤ max

(
A

1
p−
p(·)(u), A

1
p+
p(·)(u)

)
. (2.2)

Proposition 2.2 (Generalized Hölder inequality (see e.g. [3, (16)], [10, Lemma 2.6.5]). The
inequality ∫

G
| f (x)g(x)|dx ≤ 2| f |p(x)|g|p′(x)

holds for every f ∈ Lp(x)(G) and g ∈ Lp′(x)(G), where 1
p′(x) +

1
p(x) = 1.

The variable exponent Sobolev space W1,p(x)(G) is defined by

W1,p(x)(G) =
{

u ∈ Lp(x)(G) : |∇u| ∈ Lp(x)(G)
}

with the norm |u|1,p(x) = |u|p(x) + |∇u|p(x).
The spaces Lp(x)(G), W1,p(x)(G) are separable, uniformly convex and reflexive Banach

spaces (see e.g. [10, Theorems 3.2.7, 3.4.7, 3.4.9, 8.1.6, Corollary 3.4.5], [17, Theorem 2.5, Corol-
lary 2.7, Corollary 2.12, Theorem 3.1], [14, Theorems 1.10 and 2.1]).

We need some properties on spaces W1,p(x)(G).

Proposition 2.3 (See [15, Theorem 1.1], [10, Corollary 8.3.2]). Let p ∈ C0,1(G) and q : G → R is
measurable. Assume that

p(x) ≤ q(x) ≤ np(x)
n− p(x)

= p∗(x), a.e. x ∈ G.

Then there is a continuous embedding W1,p(x)(G)→ Lq(x)(G).

Proposition 2.4 (See [14, Theorem 2.3], [10, Corollary 8.4.4]). Let p, q ∈ C(G) and p, q ∈
L∞
+(G) =

{
t ∈ L∞(G) : ess infG t ≥ 1

}
. Assume that

p(x) < n, q(x) <
np(x)

n− p(x)
= p∗(x), ∀x ∈ G.

Then there is a continuous and compact embedding W1,p(x)(G)→ Lq(x)(G).

Proposition 2.5 (See [12, Theorem 2.1]). Let G ⊂ Rn be an open bounded domain with Lipschitz
boundary. Suppose that p ∈ W1,s(G) with 1 ≤ p− ≤ p+ < n < s and q : ∂G → R is measurable.
Let t(x) = (n−1)p(x)

n−p(x) for x ∈ ∂G. Then there is a boundary trace embedding W1,p(x)(G)→ Lq(x)(∂G)

which is continuous for q(x) = t(x) and compact for 1 ≤ q(x) < t(x), x ∈ ∂G.
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Theorem 2.6 (Leray–Lions (see [11, Theorem 5.3.23])). Let X be a reflexive real Banach space. Let
T : X → X∗ be an operator satisfying the conditions

(i) T is bounded;

(ii) T is demicontinuous;

(iii) T is coercive.

Moreover, let there exist a bounded mapping Φ : X× X → X∗ such that

(iv) Φ(u, u) = T(u) for every u ∈ X;

(v) for all u, w, h ∈ X and any sequence {tn}∞
n=1 of real numbers such that tn → 0 we have

Φ(u + tnh, w)) ⇀ Φ(u, w);

(vi) for all u, w ∈ X we have
〈Φ(u, u)−Φ(w, u), u− w〉 ≥ 0

(the so-called condition of monotonicity in the principal part);

(vii) if un ⇀ u and
lim
n→∞
〈Φ(un, un)−Φ(u, un), un − u〉 = 0,

then we have
Φ(w, un) ⇀ Φ(w, u) ∀w ∈ X;

(viii) if w ∈ X, un ⇀ u, Φ(w, un) ⇀ z, then

lim
n→∞
〈Φ(w, un), un〉 = 〈z, u〉 .

Then the equation T(u) = f ∗ has at least one solution u ∈ X for every f ∗ ∈ X∗.

3 Proof of the existence theorem

Proof. We define nonlinear operators J, B, Γ : Vp(x)(G) → V∗p(x)(G) and an element f ∗ ∈
V∗p(x)(G) by

〈J(u), η〉 =
∫

G
|∇u(x)|p(x)−2∇u(x)∇η(x)dx,

〈B(u), η〉 =
∫

G
b (x, u(x),∇u(x)) η(x)dx,

〈Γ(u), η〉 =
∫

∂G
|x|1−p(x)u(x)|u(x)|p(x)−2η(x)dS,

〈 f ∗, η〉 =
∫

G
f (x)η(x)dx

for all u, η ∈ Vp(x)(G). By the definition of Vp(x)(G), it is obvious that J and f ∗ are well
defined. Now, we shall verify that B, Γ also are well defined. We denote M0 = ‖u(x)‖ (here
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norm is in M(G), see [4]). At first, we estimate | 〈Γ(u), η〉 |. For this it is sufficient to assume
1 < |u(x)| ≤ M0. Then we get ‖u(x)‖p(x)−1 ≤ Mp+−1

0 and therefore

| 〈Γ(u), η〉 | =
∣∣∣∣∫

∂G
|x|1−p(x)u(x)|u(x)|p(x)−2η(x)dS

∣∣∣∣
≤
∣∣∣∣∫{|x|<d}∩∂G

|x|1−p(x)|u(x)|p(x)−1η(x)dS
∣∣∣∣

+

∣∣∣∣∫
∂G\{{|x|<d}∩∂G}

|x|1−p(x)|u(x)|p(x)−1η(x)dS
∣∣∣∣

≤ sup
G
|η(x)| ·Mp+−1

0

{
meas ∂Ω

∫ d

0
rn−p+−1dr + d1−p+ meas ∂G

}
= sup

G
|η(x)| ·Mp+−1

0

(
meas ∂Ω · dn−p+

n− p+
+ d1−p+ meas ∂G

)
,

(3.1)

where Ω is a domain on the unit sphere with smooth boundary ∂Ω, obtained by the intersec-
tion of the cone with the unit sphere; (we can choose d so: 0 < d� 1).

Further, according to (iii)a, it is clear that

| 〈B(u), η〉 | ≤
∫

G
|b (x, u(x),∇u(x)) | · |η(x)|dx

≤ b1 sup
G
|η(x)|

∫
G

(
|b0(x)|+ |u(x)|q0(x) + |∇u(x)|q1(x)

)
dx.

Next, we derive using the Hölder inequality∫
G
|b0(x)|dx ≤ 2|b0(x)|q∗(x) · |1|(q∗(x))′ ≤ const(n, p+, p−, meas G) · |b0(x)|q∗(x).

Further, it is clear that

q1(x) < p(x), q0(x) <
n(p+ − 1) + p+

n− p+
.

Therefore∫
G
|u(x)|q0(x)dx =

∫
G∩{|u(x)|≤1}

|u(x)|q0(x)dx +
∫

G∩{1<|u(x)|≤M0}
|u(x)|q0(x)dx

≤
(

1 + M
n(p+−1)+p+

n−p+
0

)
·meas G.

Again using the Hölder inequality∫
G
|∇u(x)|q1(x)dx ≤ 2|∇u(x)|p(x) · |1| p(x)

p(x)−q1(x)

≤ const(n, p+, p−, meas G) · |∇u(x)|p(x).

Thus, it is proved that
| 〈B(u), η〉 | < ∞. (3.2)

Lemma 3.1. J, B, Γ are bounded and continuous operators.
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Proof. The boundedness and the continuity of J is proved in [17] (see Corollary 4.4). The
estimates (3.1), (3.2) mean the boundedness of B, Γ.

Now, we consider the so-called Nemytski operator H(u)(x) = b(x, u,∇u) ∈ CAR(G).
By assumption (iii)a, we get that operator H(u) maps the space Vp(x)(G) into Lq∗(x)(G) and
this map is continuous and bounded (see [17, Theorems 4.1–4.3]). Moreover, the operator
B : Vp(x)(G) → V∗p(x)(G) defined above as well as is continuous and bounded (see [17, Corol-
lary 4.4]).

Next, we study the operator Γ. Let {un}∞
n=1 ⊂ Vp(x)(G) be any sequence and let for

u, un ∈ M(G) : ‖un − u‖ → 0. By the property of M(G), we get that un(x) → u(x) uni-
formly almost everywhere in ∂G. Moreover, since un ∈W1,p(x)(G) and, by the Proposition 2.5,
the boundary trace embedding W1,p(x)(G)→ Lq(x)(∂G), 1 ≤ q(x) < (n−1)p(x)

n−p(x) is compact, we
have |un(x)|p(x)−1 ≤ Mp+−1

0 , x ∈ ∂G. Therefore, we can pass to the limit under the symbol of
integral over ∂G and we obtain

lim
n→∞
| 〈Γ(un)− Γ(u), η〉 | = 0,

i.e. the operator Γ is continuous.

Lemma 3.2. The operator J is monotone on the space Vp(x)(G), i.e. for any u, η ∈ Vp(x)(G) one has

〈J(u)− J(η), u− η〉 ≥ 0. (3.3)

Moreover,

〈J(u)− J(η), u− η〉 ≥ 1
2p+

min
{
|∇(u− η)|p−p(x); |∇(u− η)|p+p(x)

}
if p(x) ≥ 2; (3.4)

〈J(u)− J(η), u− η〉 ≥
(p−−1)min

{
|∇(u−η)|p−p(x); |∇(u−η)|p+p(x)

}
2 max

{
(
∫

G(|∇u(x)|p(x)+|∇η(x)|p(x))dx)
2−p−

2 ; (
∫

G(|∇u(x)|p(x)+|∇η(x)|p(x))dx)
2−p+

2

}

if 1 < p(x) < 2. (3.5)

Proof. By direct calculation, we have

〈J(u)− J(η), u− η〉

=
∫

G

(
|∇u(x)|p(x)−2∇u(x)− |∇η(x)|p(x)−2∇η(x)

)
(∇u(x)−∇η(x))dx. (3.6)

Now, we use the known inequalities (see e.g. proof of Theorem 3.1 (i) [13], inequality (4.8) [2])
for any ξ, η ∈ Rn:

(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η) ≥ (p− 1)(|ξ|p + |η|p)

p−2
p |ξ − η|2 if 1 < p < 2;(

|ξ|p−2ξ − |η|p−2η
)
(ξ − η) ≥ 1

2p |ξ − η|p if p ≥ 2.
(3.7)

Therefore, for p(x) ≥ 2 we obtain

〈J(u)− J(η), u− η〉 =
∫

G

(
|∇u(x)|p(x)−2∇u(x)− |∇η(x)|p(x)−2∇η(x)

)
(∇u(x)−∇η(x))dx

≥ 1
2p+

∫
G
|∇u−∇η|p(x)dx ≥ 1

2p+
min

{
|∇(u− η)|p−p(x); |∇(u− η)|p+p(x)

}
,

by the inequality (2.1).
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Now we consider the case 1 < p(x) < 2. For this case let s(x) = 2
p(x) , s′(x) = 2

2−p(x) . Then
we have

s− =
2

p+
≤ s(x) ≤ 2

p−
= s+; s′− =

2
2− p−

≤ s′(x) ≤ 2
2− p+

= s′+; =⇒

(3.8)
1

s+
=

p−
2

,
1

s−
=

p+
2

;
1

s′+
=

2− p+
2

,
1

s′−
=

2− p−
2

.

By (3.7) for 1 < p(x) < 2, we obtain

〈J(u)− J(η), u− η〉 =
∫

G

(
|∇u(x)|p(x)−2∇u(x)− |∇η(x)|p(x)−2∇η(x)

)
(∇u(x)−∇η(x))dx

≥ (p− − 1)
∫

G

|∇u(x)−∇η(x)|2

(|∇u(x)|p(x)+|∇η(x)|p(x))
2−p(x)

p(x)

dx.

Next we consider the integral∫
G
|∇u(x)−∇η(x)|p(x)dx

=
∫

G

|∇u(x)−∇η(x)|p(x)

(|∇u(x)|p(x)+|∇η(x)|p(x))
2−p(x)

2

(
|∇u(x)|p(x) + |∇η(x)|p(x)

) 2−p(x)
2 dx

≤ 2

∣∣∣∣∣ |∇u(x)−∇η(x)|p(x)

(|∇u(x)|p(x)+|∇η(x)|p(x))
2−p(x)

2

∣∣∣∣∣
s(x)

·
∣∣∣∣∣(|∇u(x)|p(x) + |∇η(x)|p(x)

) 2−p(x)
2

∣∣∣∣∣
s′(x)

≤ 2 max


∫

G

|∇u(x)−∇η(x)|2

(|∇u(x)|p(x)+|∇η(x)|p(x))
2−p(x)

p(x)

dx

 1
s−

;

∫
G

|∇u(x)−∇η(x)|2

(|∇u(x)|p(x)+|∇η(x)|p(x))
2−p(x)

p(x)

dx

 1
s+


×max

{(∫
G

(
|∇u(x)|p(x) + |∇η(x)|p(x)

)
dx
) 1

s′− ;
(∫

G

(
|∇u(x)|p(x) + |∇η(x)|p(x)

)
dx
)

1
s′+

}
.

Hence, by (3.8), it follows that

max


∫

G

|∇u(x)−∇η(x)|2

(|∇u(x)|p(x)+|∇η(x)|p(x))
2−p(x)

p(x)

dx


p+
2

;

∫
G

|∇u(x)−∇η(x)|2

(|∇u(x)|p(x)+|∇η(x)|p(x))
2−p(x)

p(x)

dx


p−
2


≥
∫

G |∇u(x)−∇η(x)|p(x)dx

2 max

{
(
∫

G(|∇u(x)|p(x)+|∇η(x)|p(x))dx)
2−p−

2 ; (
∫

G(|∇u(x)|p(x)+|∇η(x)|p(x))dx)
2−p+

2

}

≥
min

{
|∇(u−η)|p−p(x); |∇(u−η)|p+p(x)

}
2 max

{
(
∫

G(|∇u(x)|p(x)+|∇η(x)|p(x))dx)
2−p−

2 ; (
∫

G(|∇u(x)|p(x)+|∇η(x)|p(x))dx)
2−p+

2

} ,

by the inequality (2.1).

Lemma 3.3. If un ⇀ u in Vp(x)(G) (weak convergence) and

|∇un|p(x) → |∇u|p(x), (3.9)

then B(un)→ B(u) in (Vp(x)(G))∗.
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Proof. By the assumption (i), the space W1,p(x) is a Banach space, which is separable and
reflexive (see Theorem 3.1 [17]). Therefore, from the weak convergence un ⇀ u follows the
boundedness of the set {|un|1,p(x)}. In addition, by proposition 2.4, there is the operator of
the compact embedding that maps this set to the compact set in Lp(x)(G), i.e. this operator is
compact operator. But then there is subsequence {unk} → u in Lp(x)(G). Together with (3.9) we
have that {unk} → u in Vp(x)(G). By Lemma 3.1 operator B is continuous operator. Therefore,
we can perform the passage to the limit under the integral symbol and thus B(un)→ B(u) in
(Vp(x)(G))∗.

Set T := J + B + Γ. Then the operator equation

T(u) = f ∗ (3.10)

is equivalent to validity of the integral identity (II). This fact means that the solutions of (3.10)
correspond one-to-one to the weak solutions of (RQL). Now, we shall verify the assumptions
(i)–(viii) of the Leray–Lions Theorem 2.6 to prove that there is a solution of (3.10).

Assumptions (i)–(ii) follow directly from Lemma 3.1. The coercivity of T (assumption (iii))
is a direct consequence of (iii)b and γ > 0:

〈T(u), u〉 =
∫

G

〈
|∇u(x)|p(x) + b (x, u(x),∇u(x)) u(x)

〉
dx + γ

∫
∂G
|x|1−p(x)|u(x)|p(x)dS

≥
∫

G

(
|∇u(x)|p(x) + |u(x)|p(x)

)
for |u| > 1.

Now, we use the inequality (2.1)∫
G

(
|∇u(x)|p(x) + |u(x)|p(x)

)
≥ min

(
|u|p−1,p(x), |u|

p+
1,p(x)

)
.

Then we obtain

lim
|u|1,p(x)→∞

〈T(u), u〉
|u|1,p(x)

≥ lim
|u|1,p(x)→∞

|u|p±−1
1,p(x) = ∞.

Let us define an operator Φ : Vp(x)(G) ×Vp(x)(G) → (Vp(x)(G))
∗ by

〈Φ(u, w), η〉 := 〈J(u), η〉+ 〈B(w), η〉+ 〈Γ(w), η〉 for all u, w, η ∈ Vp(x)(G).

The assumption (iv) is obvious.
Next, let u, w, h ∈ Vp(x)(G) and tn → 0. Then, by continuity of operator J, we have

Φ(u + tnh, w) = J(u + tnh) + B(w) + Γ(w)→ J(u) + B(w) + Γ(w) = Φ(u, w).

Thus, the assumption (v) is satisfied.
The assumption (vi) satisfies by Lemma 3.2, because of

Φ(u, u)−Φ(w, u) = J(u)− J(w).

Now, we shall verify the assumption (vii). Let un ⇀ u in Vp(x)(G) and

lim
n→∞
〈Φ(un, un)−Φ(u, un), un − u〉 = 0 =⇒

lim
n→∞
〈J(un)− J(u), un − u〉 = 0. (3.11)
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From (3.11) and (3.4)–(3.5) it follows that |∇un|p(x) → |∇u|p(x), i.e. (3.9) is satisfied. Moreover,
un → u in M. The last facts and that W1,p(x) is a uniformly convex Banach space together with
the weak convergence imply

un → u in V(p(x)(G)

(see e.g. Proposition 2.1.22 (iv)). Further, by Lemmas 3.1 and 3.3, we have

Φ(w, un) = J(w)+B(un)+Γ(un)→ J(w)+B(u)+Γ(u) = Φ(w, u) for arbitrary w ∈V(p(x)(G).

Finally, we verify the assumption (viii). Let w ∈ Vp(x)(G), un ⇀ u in Vp(x)(G). Then, in
virtue of B(un)→ B(u) and Γ(un)→ Γ(u) in

(
V(p(x)(G)

)∗ (see Lemmas 3.1, 3.3), we obtain

〈Φ(w, un), un〉 = 〈J(w) + B(un) + Γ(un), un〉
→ 〈J(w), u〉+ 〈B(u), u〉+ 〈Γ(u), u〉
= 〈Φ(w, u), u〉 .

Hence we have: un ⇀ u in V(p(x)(G) implies that Φ(w, un) → J(w) + B(u) + Γ(u).
Thus, all assumptions of the Leray–Lions Theorem are satisfied.
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