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Abstract. We study the Cauchy problem of the 3D incompressible Navier–Stokes equa-
tions with nonlinear damping term α|u|β−1u (α > 0 and β ≥ 1). In [J. Math. Anal.
Appl. 377(2011), 414–419], Zhang et al. obtained global strong solution for β > 3 and
the solution is unique provided that 3 < β ≤ 5. In this note, we aim at deriving the
uniqueness of global strong solution for any β > 3.

Keywords: incompressible Navier–Stokes equations, strong solution, uniqueness,
damping.

2010 Mathematics Subject Classification: 35Q35, 76D05, 76B03.

1 Introduction

We are concerned with the following incompressible Navier–Stokes equations with damping
in R3: 

ut − µ∆u + u · ∇u + α|u|β−1u +∇P = 0,

div u = 0,

u(0, x) = u0(x),

lim
|x|→∞

|u(t, x)| = 0,

(1.1)

where u = (u1(t, x), u2(t, x), u3(t, x)) is the velocity field, P(t, x) is a scalar pressure. t ≥ 0 is
the time, x ∈ R3 is the spatial coordinate. In the damping term, α > 0 and β ≥ 1 are two
constants. The prescribed function u0(x) is the initial velocity field with div u0 = 0, while the
constant µ > 0 represents the viscosity coefficient of the flow.

When there is no damping term α|u|β−1u, the system (1.1) is reduced to the classical
incompressible Navier–Stokes equations, which has been attracted quite a lot of attention,
refer to [2–6,8] and references therein. The model (1.1) comes from porous media flow, friction
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effects, or some dissipative mechanisms, mainly as a limiting system from compressible flows
(see [1] for the physical background). The system (1.1) was studied firstly by Cai and Jiu [1],
they showed the existence of a global weak solution for any β ≥ 1 and global strong solutions
for β ≥ 7

2 . Moreover, the uniqueness is shown for any 7
2 ≤ β ≤ 5. In [7], Zhang et al. proved

for β > 3 and u0 ∈ H1 ∩ Lβ+1 that the system (1.1) has a global strong solution and the strong
solution is unique when 3 < β ≤ 5. Later, Zhou [10] improved the results in [1,7]. He obtained
that the strong solution exists globally for β ≥ 3 and u0 ∈ H1. Moreover, regularity criteria
for (1.1) is also established for 1 ≤ β < 3 as follows: if u(t, x) satisfies

u ∈ Ls(0, T; Lγ) with
2
s
+

3
γ
≤ 1, 3 < γ < ∞, (1.2)

or
∇u ∈ Ls̃(0, T; Lγ̃) with

2
s̃
+

3
γ̃
≤ 1, 3 < γ̃ < ∞, (1.3)

then the solution remains smooth on [0, T]. Recently, Zhong [9] showed the global unique
strong solution for any β ≥ 1 provided that the viscosity constant µ is sufficiently large or
‖u0‖L2‖∇u0‖L2 is small enough.

Now we define precisely what we mean by strong solutions to the system (1.1).

Definition 1.1 (Strong solutions). A pair (u, P) is called a strong solution to (1.1) in R3× (0, T)
if (1.1) holds almost everywhere in R3 × (0, T) and

u ∈ L∞(0, T; H1(R3)) ∩ L2(0, T; H2(R3)) ∩ L∞(0, T; Lβ+1(R3)).

The aim of this paper is to show the uniqueness of global strong solution. Our main result
reads as follows.

Theorem 1.2. Assume that β > 3 and u0 ∈ H1(R3) ∩ Lβ+1(R3) with div u0 = 0. Then there exists
a unique global strong solution (u, P) to the system (1.1).

Remark 1.3. It should be noted that the uniqueness of global strong solutions was shown in
[1] for 7

2 ≤ β ≤ 5, while the authors [7] extended the uniqueness of global strong solutions for
3 < β ≤ 5. Thus, our theorem improves the uniqueness results in [1, 7].

2 Proof of Theorem 1.2

Throughout this section, we denote ∫
· dx =

∫
R3
· dx.

Since the global existence of strong solutions for β > 3 has been obtained in [7, Theorem 3.1],
we only need to show the uniqueness for β > 3. To this end, let (u, P) and (ū, P̄) be two
strong solutions to the system (1.1) on R3 × (0, T) with the same initial data, and denote

U , u− ū, π , P− P̄.

Subtracting (1.1)1 satisfied by (u, P) and (ū, P̄) gives

Ut − µ∆U + U · ∇u + ū · ∇U + α(|u|β−1u− |ū|β−1ū) +∇π = 0. (2.1)
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Multiplying (2.1) by U and integrating the resulting equation by parts yield that

1
2

d
dt

∫
|U|2dx + µ

∫
|∇U|2dx + α

∫
(|u|β−1u− |ū|β−1ū) ·Udx

= −
∫

U · ∇u ·Udx−
∫

ū · ∇U ·Udx , I1 + I2. (2.2)

It follows from the Hölder, Gagliardo–Nirenberg, and Young inequalities that

|I1| ≤ ‖U‖2
L4‖∇u‖L2

≤ C‖U‖
1
2
L2‖∇U‖

3
2
L2‖∇u‖L2

≤ µ

2
‖∇U‖2

L2 + C‖∇u‖4
L2‖U‖2

L2 . (2.3)

By divergence theorem and div ū = 0, one has

I2 = −
∫

ūi∂iU jU jdx =
∫

ūi∂iU jU jdx,

which gives

I2 = 0. (2.4)

Applying Hölder’s inequality, we obtain that for any β > 3,∫
(|u|β−1u− |ū|β−1ū) ·Udx

=
∫
(|u|β−1u− |ū|β−1ū) · (u− ū)dx

=
∫
|u|β+1dx−

∫
|ū|β−1ū · udx−

∫
|u|β−1u · ūdx +

∫
|ū|β+1dx

≥ ‖u‖β+1
Lβ+1 − ‖ū‖

β

Lβ+1‖u‖Lβ+1 − ‖u‖β

Lβ+1‖ū‖Lβ+1 + ‖ū‖β+1
Lβ+1

=
(
‖u‖β

Lβ+1 − ‖ū‖
β

Lβ+1

)
(‖u‖Lβ+1 − ‖ū‖Lβ+1) ≥ 0. (2.5)

Substituting (2.3)–(2.5) into (2.2) and noting α > 0, we get

d
dt
‖U‖2

L2 ≤ C‖∇u‖4
L2‖U‖2

L2 .

Thus, Gronwall’s inequality leads to

‖U‖2
L2 ≤ U0 exp

(
C
∫ T

0
‖∇u‖4

L2 dt
)

,

which combined with u ∈ L∞(0, T; H1(R3)) (since u is a strong solution of (1.1)) and u0 = ū0

(i.e., U0 = 0) implies U(x, t) = 0 for almost everywhere (x, t) ∈ R3 × (0, T). This finishes the
proof of Theorem 1.2. �
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