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Abstract. Here we solve the following system of difference equations

xn+1 =
ynyn−2

bxn−1 + ayn−2
, yn+1 =

xnxn−2

dyn−1 + cxn−2
, n ∈N0,

where parameters a, b, c, d and initial values x−j, y−j, j = 0, 2, are complex numbers, and
give a representation of its general solution in terms of two specially chosen solutions
to two homogeneous linear difference equations with constant coefficients associated to
the system. As some applications of the representation formula for the general solution
we obtain solutions to four very special cases of the system recently presented in the
literature and proved by induction, without any theoretical explanation how they can
be obtained in a constructive way. Our procedure presented here gives some theoretical
explanations not only how the general solutions to the special cases are obtained, but
how is obtained general solution to the general system.
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1 Introduction

Let N, Z, R, C be the sets of natural, integer, real and complex numbers, respectively, and
Nl = {n ∈ Z : n ≥ l}, where l ∈ Z. Let k, l ∈ Z, k ≤ l, then instead of writing k ≤ j ≤ l, we
will use the notation j = k, l.

Finding closed-form formulas for solutions to difference equations has been studied for
more than three centuries. The first results in the topic were essentially given by de Moivre
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(see, e.g., [24]) and systematized and extended later by Euler [10]. Further important results
were given by Lagrange [15] and Laplace [16]. Presentations of some of these results and some
results obtained later can be found, e.g., in [7, 9, 11, 13, 14, 17–20, 23, 25, 34]. Examples of some
problems where closed-form formulas of solutions to the equations are applied can be found,
e.g., in [5, 11, 13, 14, 17, 21–23, 34, 35, 43, 44].

Having found methods for solving linear difference equations with constant coefficients
experts looked for solvable nonlinear ones. One of the basic examples of such equations is the
bilinear difference equation

zn+1 =
αzn + β

γzn + δ
, n ∈N0, (1.1)

where α, β, γ, δ, z0 ∈ R (or ∈ C). For some methods for solving equation (1.1) consult, e.g.,
[1, 2, 7, 8, 14, 17, 22, 34]. For some results on the long-term behavior of its solutions see, e.g.,
[2, 5, 7, 9].

There have been some activities in solvability theory and related topics in the last few
decades (see, e.g., [6,12,28,29,32,33,36–53] and the references therein). This is caused, among
other things, by use of computers and systems for symbolic computation. Although they are
useful, there are some frequent problems by using them only, especially connected to getting
essentially known results, and/or getting wrong formulas, which is also caused by not giving
any theory behind the formulas presented in such papers (we have explained some of such
cases in [40, 47–49, 53], see also [36] and some references therein).

Our first explanation of such a problem appeared in 2004, when we solved the following
equation

zn =
zn−2

α + βzn−2zn−1
, n ∈N,

by a constructive method, explaining a closed-form formula for the case α = β = 1 previously
presented in the literature. In [33, 36, 37] some extensions of the equation have been investi-
gated later. The main point is that the previous equation is easily transformed to a solvable
difference equation. After that we employed and developed successfully the method, e.g., in
[6,38,39,47–49]. For some combinations of the method with other ones see, e.g., the following
representative papers: [41, 42, 45, 46, 50–52].

In the last few decades Papaschinopoulos and Schinas have popularized the area of con-
crete systems of difference equations [26–32], which motivated us to work also in the field
(see, e.g., [6, 38–42, 46–48, 50–53] and the references therein).

There has been also some recent interest in representation of solutions to difference equa-
tions and systems in terms of specially chosen sequences, for example, in terms of Fibonacci
sequences (for some basics on the sequence see, e.g., [3, 14, 54]). Many papers present such
results, but in the majority cases the results are essentially known. For some representative
papers in the area see [40] and [53], where you can find some citations which have such results.

The following four systems of difference equations

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

xnxn−2

±yn−1 ± xn−2
, n ∈N0, (1.2)

have been studied in recent paper [4], where some closed-form formulas for their solutions are
given in terms of the initial values x−j, y−j, j = 0, 2, and some subsequences of the Fibonacci
sequence. The closed-form formulas are only given and proved by induction. There are no
theoretical explanations for the formulas.
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A natural problem is to explain what is behind all the formulas given in [4]. Since it is
expected that the solvability is the main cause for this, we can try to use some of the ideas
from our previous investigations, especially on rational difference equations and systems (e.g.,
the ones in [6, 36–39, 47–49]).

Here we consider the following extension of the systems in (1.2)

xn+1 =
ynyn−2

bxn−1 + ayn−2
, yn+1 =

xnxn−2

dyn−1 + cxn−2
, n ∈N0, (1.3)

where parameters a, b, c, d and initial values x−j, y−j, j = 0, 2, are complex numbers.
Our aim is to show that system (1.3) is solvable by getting its closed-form formulas in an

elegant constructive way, and to show that all the closed-form formulas obtained in [4] easily
follow from the ones in our present paper.

2 Main results

Assume that xn0 = 0 for some n0 ≥ −2. Then from the second equation in (1.3) it follows that
yn0+1 = 0, and consequently dyn0+1 + cxn0 = 0, from which it follows that yn0+3 is not defined.
Now, assume that yn1 = 0 for some n1 ≥ −2. Then from the first equation in (1.3) it follows
that xn1+1 = 0, and consequently bxn1+1 + ayn1 = 0, from which it follows that xn1+3 is not
defined. This means that the set

2⋃
j=0

{
(x−j, y−j) ∈ C2 : x−j = 0 or y−j = 0

}
,

is a subset of the domain of undefinable solutions to system (1.3).
Hence, from now on we will assume that

xn 6= 0 6= yn, n ≥ −2. (2.1)

Now we use some related ideas to those in [6, 36–39, 47–49]. Assume that (xn, yn)n≥−2 is a
well-defined solution to system (1.3). Then from (1.3) we have

yn

xn+1
= b

xn−1

yn−2
+ a,

xn

yn+1
= d

yn−1

xn−2
+ c, n ∈N0. (2.2)

Let

un+1 =
yn

xn+1
, (2.3)

vn+1 =
xn

yn+1
, (2.4)

for n ≥ −2.
Then system (2.2) can be written as

un+1 =
b

un−1
+ a, vn+1 =

d
vn−1

+ c, n ∈N0. (2.5)

Let

u(j)
m = u2m+j, v(j)

m = v2m+j, (2.6)
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for m ≥ −1, j = 1, 2.
Then, from (2.5) we see that (u(j)

m )m≥−1, j = 1, 2, are two solutions to the following differ-
ence equation

zm =
b

zm−1
+ a, m ∈N0, (2.7)

whereas (v(j)
m )m≥−1, j = 1, 2, are two solutions to the following difference equation

ẑm =
d

ẑm−1
+ c, m ∈N0. (2.8)

Equations (2.7) and (2.8) are bilinear, so, solvable ones.
Let

zm =
wm+1

wm
, m ≥ −1, (2.9)

where
w−1 = 1 and w0 = z−1.

Then equation (2.7) becomes

wm+1 = awm + bwm−1, m ∈N0. (2.10)

Let (sm)m≥−1 be the solution to equation (2.10) such that

s−1 = 0, s0 = 1. (2.11)

Let λ1 and λ2 be the zeros of the characteristic polynomial P2(λ) = λ2 − aλ − b. Then
general solution to equation (2.10) can be written in the following form [40]

wm = bw−1sm−1 + w0sm, m ≥ −1, (2.12)

(here for m = −1 is involved the term s−2, which is calculated by using the following relation
sm−1 = (sm+1 − asm)/b for m = −1).

From (2.9) and (2.12) it follows that

zm =
bw−1sm + w0sm+1

bw−1sm−1 + w0sm
=

bsm + z−1sm+1

bsm−1 + z−1sm
, m ≥ −1. (2.13)

Hence

u(j)
m =

bsm + u(j)
−1sm+1

bsm−1 + u(j)
−1sm

, m ≥ −1,

for j = 1, 2, that is,

u2m+j =
bsm + uj−2sm+1

bsm−1 + uj−2sm
, m ≥ −1, (2.14)

for j = 1, 2.
Using (2.14) in (2.3), we obtain

x2m+1 =
y2m

u2m+1
= y2m

bsm−1 + u−1sm

bsm + u−1sm+1

= y2m
bx−1sm−1 + y−2sm

bx−1sm + y−2sm+1
, (2.15)
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and

x2m =
y2m−1

u2m
= y2m−1

bsm−2 + u0sm−1

bsm−1 + u0sm

= y2m−1
bx0sm−2 + y−1sm−1

bx0sm−1 + y−1sm
, (2.16)

for m ∈N0.
Let

ẑm =
ŵm+1

ŵm
, m ≥ −1, (2.17)

where
ŵ−1 = 1 and ŵ0 = ẑ−1.

Then equation (2.8) becomes

ŵm+1 = cŵm + dŵm−1, m ∈N0. (2.18)

Let (ŝm)m≥−1 be the solution to equation (2.18) such that

ŝ−1 = 0, ŝ0 = 1. (2.19)

Let λ̂1 and λ̂2 be the zeros of the characteristic polynomial P̂2(λ) = λ2 − cλ − d. Then
general solution to equation (2.18) can be written in the following form

ŵm = dŵ−1ŝm−1 + ŵ0ŝm, m ≥ −1. (2.20)

From (2.17) and (2.20) it follows that

ẑm =
dŵ−1ŝm + ŵ0ŝm+1

dŵ−1ŝm−1 + ŵ0ŝm
=

dŝm + ẑ−1ŝm+1

dŝm−1 + ẑ−1ŝm
, m ≥ −1. (2.21)

From (2.6) and (2.21) it follows that

v(j)
m =

dŝm + v(j)
−1ŝm+1

dŝm−1 + v(j)
−1ŝm

, m ≥ −1,

for j = 1, 2, that is,

v2m+j =
dŝm + vj−2ŝm+1

dŝm−1 + vj−2ŝm
, m ≥ −1. (2.22)

for j = 1, 2.
Using (2.22) in (2.4), we obtain

y2m+1 =
x2m

v2m+1
= x2m

dŝm−1 + v−1ŝm

dŝm + v−1ŝm+1

= x2m
dy−1ŝm−1 + x−2ŝm

dy−1ŝm + x−2ŝm+1
, (2.23)
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and

y2m =
x2m−1

v2m
= x2m−1

dŝm−2 + v0ŝm−1

dŝm−1 + v0ŝm

= x2m−1
dy0ŝm−2 + x−1ŝm−1

dy0ŝm−1 + x−1ŝm
, (2.24)

for m ∈N0.
From (2.15), (2.16), (2.23) and (2.24), we have

x2m+1 = y2m
bx−1sm−1 + y−2sm

bx−1sm + y−2sm+1

= x2m−1
dy0ŝm−2 + x−1ŝm−1

dy0ŝm−1 + x−1ŝm

bx−1sm−1 + y−2sm

bx−1sm + y−2sm+1
, (2.25)

x2m = y2m−1
bx0sm−2 + y−1sm−1

bx0sm−1 + y−1sm

= x2m−2
dy−1ŝm−2 + x−2ŝm−1

dy−1ŝm−1 + x−2ŝm

bx0sm−2 + y−1sm−1

bx0sm−1 + y−1sm
, (2.26)

y2m+1 = x2m
dy−1ŝm−1 + x−2ŝm

dy−1ŝm + x−2ŝm+1

= y2m−1
dy−1ŝm−1 + x−2ŝm

dy−1ŝm + x−2ŝm+1

bx0sm−2 + y−1sm−1

bx0sm−1 + y−1sm
, (2.27)

y2m = x2m−1
dy0ŝm−2 + x−1ŝm−1

dy0ŝm−1 + x−1ŝm

= y2m−2
dy0ŝm−2 + x−1ŝm−1

dy0ŝm−1 + x−1ŝm

bx−1sm−2 + y−2sm−1

bx−1sm−1 + y−2sm
, (2.28)

for m ∈N0.
Multiplying the equalities which are obtained from (2.25), (2.26), (2.27) and (2.28) from 1

to m, respectively, it follows that

x2m+1 = x1

m

∏
j=1

dy0ŝj−2 + x−1ŝj−1

dy0ŝj−1 + x−1ŝj

bx−1sj−1 + y−2sj

bx−1sj + y−2sj+1
, (2.29)

x2m = x0

m

∏
j=1

dy−1ŝj−2 + x−2ŝj−1

dy−1ŝj−1 + x−2ŝj

bx0sj−2 + y−1sj−1

bx0sj−1 + y−1sj
, (2.30)

y2m+1 = y1

m

∏
j=1

dy−1ŝj−1 + x−2ŝj

dy−1ŝj + x−2ŝj+1

bx0sj−2 + y−1sj−1

bx0sj−1 + y−1sj
, (2.31)

y2m = y0

m

∏
j=1

dy0ŝj−2 + x−1ŝj−1

dy0ŝj−1 + x−1ŝj

bx−1sj−2 + y−2sj−1

bx−1sj−1 + y−2sj
, (2.32)

for m ∈N0.
From (2.29), since

x1 =
y0y−2

bx−1 + ay−2
,

s1 = as0 + bs−1 = a, (2.33)
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and after some calculations we have

x2m+1 =
y0y−2

bx−1 + ay−2

dy0ŝ−1 + x−1ŝ0

dy0ŝm−1 + x−1ŝm

bx−1s0 + y−2s1

bx−1sm + y−2sm+1

=
x−1y−2y0

(dy0ŝm−1 + x−1ŝm)(bx−1sm + y−2sm+1)
.

From (2.30), (2.33) and after some calculations we have

x2m = x0
dy−1ŝ−1 + x−2ŝ0

dy−1ŝm−1 + x−2ŝm

bx0s−1 + y−1s0

bx0sm−1 + y−1sm

=
y−1x−2x0

(dy−1ŝm−1 + x−2ŝm)(bx0sm−1 + y−1sm)
.

From (2.31), since

y1 =
x0x−2

dy−1 + cx−2
,

ŝ1 = cŝ0 + dŝ−1 = c, (2.34)

and after some calculations we have

y2m+1 =
x−2x0

dy−1 + cx−2

dy−1ŝ0 + x−2ŝ1

dy−1ŝm + x−2ŝm+1

bx0s−1 + y−1s0

bx0sm−1 + y−1sm

=
y−1x−2x0

(dy−1ŝm + x−2ŝm+1)(bx0sm−1 + y−1sm)
.

From (2.32), (2.34) and after some calculations we have

y2m = y0
dy0ŝ−1 + x−1ŝ0

dy0ŝm−1 + x−1ŝm

bx−1s−1 + y−2s0

bx−1sm−1 + y−2sm

=
x−1y−2y0

(dy0ŝm−1 + x−1ŝm)(bx−1sm−1 + y−2sm)
.

From the above consideration we see that the following result holds.

Theorem 2.1. Consider system (1.3). Let sn be the solution to equation (2.10) satisfying initial con-
ditions (2.11), and ŝn be the solution to equation (2.18) satisfying initial conditions (2.19). Then, for
every well-defined solution (xn, yn)n≥−2 to the system the following representation formulas hold

x2n−1 =
x−1y−2y0

(dy0ŝn−2 + x−1ŝn−1)(bx−1sn−1 + y−2sn)
, (2.35)

x2n =
y−1x−2x0

(dy−1ŝn−1 + x−2ŝn)(bx0sn−1 + y−1sn)
, (2.36)

y2n−1 =
y−1x−2x0

(dy−1ŝn−1 + x−2ŝn)(bx0sn−2 + y−1sn−1)
, (2.37)

y2n =
x−1y−2y0

(dy0ŝn−1 + x−1ŝn)(bx−1sn−1 + y−2sn)
, (2.38)

for n ∈N0.
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3 Some applications

As some applications we show how are obtained closed-form formulas for solutions to the
systems in (1.2), which were presented in [4].

First result proved in [4] is the following.

Corollary 3.1. Let (xn, yn)n≥−2 be a well-defined solution to the following system

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

xnxn−2

yn−1 + xn−2
, n ∈N0. (3.1)

Then

x2n−1 =
x−1y−2y0

(y0 fn−2 + x−1 fn−1)(x−1 fn−1 + y−2 fn)
, (3.2)

x2n =
x0x−2y−1

(y−1 fn−1 + x−2 fn)(x0 fn−1 + y−1 fn)
, (3.3)

y2n−1 =
x0x−2y−1

(y−1 fn−1 + x−2 fn)(x0 fn−2 + y−1 fn−1)
, (3.4)

y2n =
x−1y−2y0

(y0 fn−1 + x−1 fn)(x−1 fn−1 + y−2 fn)
, (3.5)

for n ∈N0, where ( fn)n≥−1 is the solution to the following difference equation

fn+1 = fn + fn−1, n ∈N0, (3.6)

satisfying the initial conditions f−1 = 0 and f0 = 1.

Proof. System (3.1) is obtained from system (1.3) with a = b = c = d = 1. For these values of
parameters a, b, c, d equations (2.10) and (2.18) are the same. Namely, they both are

wn+1 = wn + wn−1, n ∈N0. (3.7)

Hence the sequences (sn)n≥−1 and (ŝn)n≥−1 satisfying conditions (2.11) and (2.19) respectively,
are the same and we have

sn = ŝn = fn, n ≥ −1. (3.8)

By using (3.8) in formulas (2.35)–(2.38), formulas (3.2)–(3.5) follow.

The following corollary is Theorem 3 in [4].

Corollary 3.2. Let (xn, yn)n≥−2 be a well-defined solution to the following system

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

xnxn−2

yn−1 − xn−2
, n ∈N0. (3.9)

Then

x2n−1 =
(−1)nx−1y−2y0

(y0 fn−2 − x−1 fn−1)(x−1 fn−1 + y−2 fn)
, (3.10)

x2n =
(−1)n+1x0x−2y−1

(y−1 fn−1 − x−2 fn)(x0 fn−1 + y−1 fn)
, (3.11)

y2n−1 =
(−1)n+1x0x−2y−1

(y−1 fn−1 − x−2 fn)(x0 fn−2 + y−1 fn−1)
, (3.12)

y2n =
(−1)n+1x−1y−2y0

(y0 fn−1 − x−1 fn)(x−1 fn−1 + y−2 fn)
, (3.13)

for n ∈N0.



Solvable system of difference equations 9

Proof. System (3.9) is obtained from system (1.3) with a = b = −c = d = 1. For these values
of parameters a, b, c, d equation (2.10) becomes (3.7), whereas equation (2.18) becomes

ŵn+1 = −ŵn + ŵn−1, (3.14)

for n ∈N0.

From (2.11) and (3.7) we have

sn = fn, n ≥ −1. (3.15)

Let

ŵn = (−1)nw̃n, n ≥ −1. (3.16)

Employing (3.16) in (3.14) we obtain

w̃n+1 = w̃n + w̃n−1, n ∈N0. (3.17)

From (3.16) we have

s̃−1 = 0 and s̃0 = 1. (3.18)

From this and since s̃n is a solution to equation (3.17) we have

s̃n = fn, n ≥ −1, (3.19)

from which along with (3.16) it follows that

ŝn = (−1)n fn, (3.20)

for n ≥ −1.

By using (3.15) and (3.20) in formulas (2.35)–(2.38), after some simple calculations are
obtained formulas (3.10)–(3.13).

The following corollary is Theorem 4 in [4].

Corollary 3.3. Let (xn, yn)n≥−2 be a well-defined solution to the following system

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

xnxn−2

−yn−1 + xn−2
, n ∈N0. (3.21)
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Then

x6n−2 =
(−1)nx−2x0

x0 f3n−2 + y−1 f3n−1
, (3.22)

x6n−1 =
(−1)nx−1y−2

x−1 f3n−1 + y−2 f3n
, (3.23)

x6n =
(−1)nx0y−1

x0 f3n−1 + y−1 f3n
, (3.24)

x6n+1 =
(−1)ny0y−2

x−1 f3n + y−2 f3n+1
, (3.25)

x6n+2 =
(−1)nx0x−2y−1

(x−2 − y−1)(x0 f3n + y−1 f3n+1)
, (3.26)

x6n+3 =
(−1)nx−1y0y−2

(x−1 − y0)(x−1 f3n+1 + y−2 f3n+2)
, (3.27)

y6n−2 =
(−1)nx−1y−2

x−1 f3n−2 + y−2 f3n−1
, (3.28)

y6n−1 =
(−1)nx0y−1

x0 f3n−2 + y−1 f3n−1
, (3.29)

y6n =
(−1)ny0y−2

x−1 f3n−1 + y−2 f3n
, (3.30)

y6n+1 =
(−1)nx0x−2y−1

(x−2 − y−1)(x0 f3n−1 + y−1 f3n)
, (3.31)

y6n+2 =
(−1)nx−1y0y−2

(x−1 − y0)(x−1 f3n + y−2 f3n+1)
, (3.32)

y6n+3 =
(−1)n+1x0x−2

x0 f3n + y−1 f3n+1
, (3.33)

for n ∈N0.

Proof. System (3.21) is obtained from system (1.3) with a = b = c = −d = 1. For these
values of parameters a, b, c, d equation (2.10) becomes equation (3.7), whereas equation (2.18)
becomes

ŵn+1 = ŵn − ŵn−1, n ∈N0. (3.34)

From (2.11) and (3.7) we have that (3.15) holds.
The solution ŝn to equation (3.34) satisfying the initial conditions in (2.19) is equal to

ŝn =
λ̂n+1

1 − λ̂n+1
2

λ1 − λ2
, n ≥ −1,

where
λ1,2 = cos

π

3
± i sin

π

3
,

from which by some calculation it follows that

ŝn =
2√
3

sin
(n + 1)π

3
, n ≥ −1. (3.35)
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Formula (3.35) shows that the sequence ŝn is six periodic. Namely, we have

ŝ6m−1 = ŝ6m+2 = 0, (3.36)

ŝ6m = s6m+1 = 1, (3.37)

ŝ6m+3 = s6m+4 = −1, (3.38)

for m ≥ −1 (in fact, (3.36)–(3.38) hold for every m ∈ Z).
Equalities (3.36)–(3.38) can be written as follows

ŝ3m−1 = 0, (3.39)

ŝ3m = (−1)m, (3.40)

ŝ3m+1 = (−1)m, (3.41)

for m ≥ −1.
Using equalities (3.39)–(3.41) in formulas (2.35)–(2.38), after some calculations we have

x6n−2 =
y−1x−2x0

(−y−1ŝ3n−2 + x−2ŝ3n−1)(x0s3n−2 + y−1s3n−1)

=
y−1x−2x0

(−y−1ŝ3n−2)(x0 f3n−2 + y−1 f3n−1)

=
(−1)nx−2x0

x0 f3n−2 + y−1 f3n−1
,

x6n−1 =
x−1y−2y0

(−y0ŝ3n−2 + x−1ŝ3n−1)(x−1s3n−1 + y−2s3n)

=
x−1y−2y0

(−y0ŝ3n−2)(x−1 f3n−1 + y−2 f3n)

=
(−1)nx−1y−2

x−1 f3n−1 + y−2 f3n
,

x6n =
y−1x−2x0

(−y−1ŝ3n−1 + x−2ŝ3n)(x0s3n−1 + y−1s3n)

=
y−1x−2x0

(x−2ŝ3n)(x0 f3n−1 + y−1 f3n)

=
(−1)nx0y−1

x0 f3n−1 + y−1 f3n
,

x6n+1 =
x−1y−2y0

(−y0ŝ3n−1 + x−1ŝ3n)(x−1s3n + y−2s3n+1)

=
x−1y−2y0

(x−1ŝ3n)(x−1 f3n + y−2 f3n+1)

=
(−1)ny0y−2

x−1 f3n + y−2 f3n+1
,

x6n+2 =
y−1x−2x0

(−y−1ŝ3n + x−2ŝ3n+1)(x0s3n + y−1s3n+1)

=
y−1x−2x0

(−y−1(−1)n + x−2(−1)n)(x0 f3n + y−1 f3n+1)

=
(−1)nx0x−2y−1

(x−2 − y−1)(x0 f3n + y−1 f3n+1)
,
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x6n+3 =
x−1y−2y0

(−y0ŝ3n + x−1ŝ3n+1)(x−1s3n+1 + y−2s3n+2)

=
x−1y−2y0

(−y0(−1)n + x−1(−1)n)(x−1 f3n+1 + y−2 f3n+2)

=
(−1)nx−1y0y−2

(x−1 − y0)(x−1 f3n+1 + y−2 f3n+2)
,

y6n−2 =
x−1y−2y0

(−y0ŝ3n−2 + x−1ŝ3n−1)(x−1s3n−2 + y−2s3n−1)

=
x−1y−2y0

(−y0ŝ3n−2)(x−1 f3n−2 + y−2 f3n−1)

=
(−1)nx−1y−2

x−1 f3n−2 + y−2 f3n−1
,

y6n−1 =
y−1x−2x0

(−y−1ŝ3n−1 + x−2ŝ3n)(x0s3n−2 + y−1s3n−1)

=
y−1x−2x0

(x−2ŝ3n)(x0 f3n−2 + y−1 f3n−1)

=
(−1)nx0y−1

x0 f3n−2 + y−1 f3n−1
,

y6n =
x−1y−2y0

(−y0ŝ3n−1 + x−1ŝ3n)(x−1s3n−1 + y−2s3n)

=
x−1y−2y0

(x−1ŝ3n)(x−1 f3n−1 + y−2 f3n)

=
(−1)ny0y−2

x−1 f3n−1 + y−2 f3n
,

y6n+1 =
y−1x−2x0

(−y−1ŝ3n + x−2ŝ3n+1)(x0s3n−1 + y−1s3n)

=
y−1x−2x0

(−y−1(−1)n + x−2(−1)n)(x0 f3n−1 + y−1 f3n)

=
(−1)nx0x−2y−1

(x−2 − y−1)(x0 f3n−1 + y−1 f3n)
,

y6n+2 =
x−1y−2y0

(−y0ŝ3n + x−1ŝ3n+1)(x−1s3n + y−2s3n+1)

=
x−1y−2y0

(−y0(−1)n + x−1(−1)n)(x−1 f3n + y−2 f3n+1)

=
(−1)nx−1y0y−2

(x−1 − y0)(x−1 f3n + y−2 f3n+1)
,

y6n+3 =
y−1x−2x0

(−y−1ŝ3n+1 + x−2ŝ3n+2)(x0s3n + y−1s3n+1)

=
y−1x−2x0

(−y−1ŝ3n+1)(x0 f3n + y−1 f3n+1)

=
(−1)n+1x0x−2

x0 f3n + y−1 f3n+1
,

for n ∈N0, as claimed.

The following corollary is Theorem 5 in [4].

Corollary 3.4. Let (xn, yn)n≥−2 be a well-defined solution to the following system

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

xnxn−2

−yn−1 − xn−2
, n ∈N0. (3.42)
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Then

x6n−2 =
x−2x0

x0 f3n−2 + y−1 f3n−1
, (3.43)

x6n−1 =
x−1y−2

x−1 f3n−1 + y−2 f3n
, (3.44)

x6n =
x0y−1

x0 f3n−1 + y−1 f3n
, (3.45)

x6n+1 =
y0y−2

x−1 f3n + y−2 f3n+1
, (3.46)

x6n+2 =
−x0x−2y−1

(x−2 + y−1)(x0 f3n + y−1 f3n+1)
, (3.47)

x6n+3 =
−x−1y0y−2

(x−1 + y0)(x−1 f3n+1 + y−2 f3n+2)
, (3.48)

y6n−2 =
x−1y−2

x−1 f3n−2 + y−2 f3n−1
, (3.49)

y6n−1 =
x0y−1

x0 f3n−2 + y−1 f3n−1
, (3.50)

y6n =
y0y−2

x−1 f3n−1 + y−2 f3n
, (3.51)

y6n+1 =
−x0x−2y−1

(x−2 + y−1)(x0 f3n−1 + y−1 f3n)
, (3.52)

y6n+2 =
−x−1y0y−2

(x−1 + y0)(x−1 f3n + y−2 f3n+1)
, (3.53)

y6n+3 =
x0x−2

x0 f3n + y−1 f3n+1
, (3.54)

for n ∈N0.

Proof. System (3.42) is obtained from system (1.3) with a = b = −c = −d = 1. For these
values of parameters a, b, c, d equation (2.10) becomes equation (3.7), whereas equation (2.18)
becomes

ŵn+1 = −ŵn − ŵn−1, n ∈N0. (3.55)

From (2.11) and (3.7) we have that (3.15) holds.
The solution ŝn to equation (3.55) satisfying initial conditions (2.19) is equal to

ŝn =
λ̂n+1

1 − λ̂n+1
2

λ1 − λ2
, n ≥ −1,

where

λ1,2 = cos
2π

3
± i sin

2π

3
,

from which by some calculation it follows that

ŝn =
2√
3

sin
2(n + 1)π

3
, n ≥ −1. (3.56)
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Formula (3.56) shows that the sequence ŝn is three periodic. Namely, we have

ŝ3m = 1, (3.57)

ŝ3m+1 = −1, (3.58)

ŝ3m+2 = 0, (3.59)

for m ≥ −1 (in fact, (3.57)–(3.59) hold for every m ∈ Z).
Using equalities (3.57)–(3.59) in formulas (2.35)–(2.38), after some calculations we have

x6n−2 =
y−1x−2x0

(−y−1ŝ3n−2 + x−2ŝ3n−1)(x0s3n−2 + y−1s3n−1)

=
y−1x−2x0

(−y−1ŝ3n−2)(x0 f3n−2 + y−1 f3n−1)

=
x−2x0

x0 f3n−2 + y−1 f3n−1
,

x6n−1 =
x−1y−2y0

(−y0ŝ3n−2 + x−1ŝ3n−1)(x−1s3n−1 + y−2s3n)

=
x−1y−2y0

(−y0ŝ3n−2)(x−1 f3n−1 + y−2 f3n)

=
x−1y−2

x−1 f3n−1 + y−2 f3n
,

x6n =
y−1x−2x0

(−y−1ŝ3n−1 + x−2ŝ3n)(x0s3n−1 + y−1s3n)

=
y−1x−2x0

(x−2ŝ3n)(x0 f3n−1 + y−1 f3n)

=
x0y−1

x0 f3n−1 + y−1 f3n
,

x6n+1 =
x−1y−2y0

(−y0ŝ3n−1 + x−1ŝ3n)(x−1s3n + y−2s3n+1)

=
x−1y−2y0

(x−1ŝ3n)(x−1 f3n + y−2 f3n+1)

=
y0y−2

x−1 f3n + y−2 f3n+1
,

x6n+2 =
y−1x−2x0

(−y−1ŝ3n + x−2ŝ3n+1)(x0s3n + y−1s3n+1)

=
y−1x−2x0

(−y−1 + x−2(−1))(x0 f3n + y−1 f3n+1)

=
−x0x−2y−1

(x−2 + y−1)(x0 f3n + y−1 f3n+1)
,

x6n+3 =
x−1y−2y0

(−y0ŝ3n + x−1ŝ3n+1)(x−1s3n+1 + y−2s3n+2)

=
x−1y−2y0

(−y0 + x−1(−1))(x−1 f3n+1 + y−2 f3n+2)

=
−x−1y0y−2

(x−1 + y0)(x−1 f3n+1 + y−2 f3n+2)
,

y6n−2 =
x−1y−2y0

(−y0ŝ3n−2 + x−1ŝ3n−1)(x−1s3n−2 + y−2s3n−1)

=
x−1y−2y0

(−y0ŝ3n−2)(x−1 f3n−2 + y−2 f3n−1)

=
x−1y−2

x−1 f3n−2 + y−2 f3n−1
,
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y6n−1 =
y−1x−2x0

(−y−1ŝ3n−1 + x−2ŝ3n)(x0s3n−2 + y−1s3n−1)

=
y−1x−2x0

(x−2ŝ3n)(x0 f3n−2 + y−1 f3n−1)

=
x0y−1

x0 f3n−2 + y−1 f3n−1
,

y6n =
x−1y−2y0

(−y0ŝ3n−1 + x−1ŝ3n)(x−1s3n−1 + y−2s3n)

=
x−1y−2y0

(x−1ŝ3n)(x−1 f3n−1 + y−2 f3n)

=
y0y−2

x−1 f3n−1 + y−2 f3n
,

y6n+1 =
y−1x−2x0

(−y−1ŝ3n + x−2ŝ3n+1)(x0s3n−1 + y−1s3n)

=
y−1x−2x0

(−y−1 + x−2(−1))(x0 f3n−1 + y−1 f3n)

=
−x0x−2y−1

(x−2 + y−1)(x0 f3n−1 + y−1 f3n)
,

y6n+2 =
x−1y−2y0

(−y0ŝ3n + x−1ŝ3n+1)(x−1s3n + y−2s3n+1)

=
x−1y−2y0

(−y0 + x−1(−1))(x−1 f3n + y−2 f3n+1)

=
−x−1y0y−2

(x−1 + y0)(x−1 f3n + y−2 f3n+1)
,

y6n+3 =
y−1x−2x0

(−y−1ŝ3n+1 + x−2ŝ3n+2)(x0s3n + y−1s3n+1)

=
y−1x−2x0

(−y−1ŝ3n+1)(x0 f3n + y−1 f3n+1)

=
x0x−2

x0 f3n + y−1 f3n+1
,

for n ∈N0, as claimed.
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