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1 Introduction

In this paper, we are concerned with boundary value problems (BVPs) for the differential
equation

x′′′ = f (t, x, x′, x′′), t ∈ (0, 1), (1.1)

with boundary conditions either

x′′(0) = A, x′(0)= B, x(1) = C, (1.2)

x′′(0) = A, x′(0)= B, x(0) = C, (1.3)

x′′(0) = A, x′(1)= B, x(1) = C, (1.4)

x′′(0) = A, x′(1)= B, x(0) = C, (1.5)

or

x′′(0) = A, x(0) = B, x(1) = C, (1.6)

where f : [0, 1]× Dx × Dp × Dq → R, and Dx, Dp, Dq ⊆ R.
We study the existence of C3[0, 1]-solutions to the above problems which do not change

their sign, are monotone and do not change their curvature.
Third-order differential equations arise in a large number of physical and technological

processes, see, for example, M. Aïboudi and B. Brighi [1], J. R. Graef et al. [9], Z. Zhang [33]
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for facts and references. Recently, various third-order BVPs have received much attention and
a lot of research has been done in this area. Here, we cite sources devoted to two-point BVPs.

Two-point BVPs for equations of the form

x′′′ = f (t, x), t ∈ (0, 1),

have been studied by A. Cabada [3], H. Li et al. [17], S. Li [18] (the problem may be singular
at t = 0 and/or t = 1), Zh. Liu et al. [20] (with singularities at t = 0, t = 1 and/or x = 0),
Z. Liu et al. [21–23], X. Lin and Z. Zhao [24], D. O’Regan [27] (the problem is singular at
x = 0), S. Smirnov [28], Q. Yao and Y. Feng [32]. The boundary conditions in these works are
as follows:

x(i)(0)− x(i)(1) = λi, λi ∈ R, i = 0, 1, 2, in [3],

x(0) = x′(0) = x′(1) = 0, in [17, 24, 32], (1.7)

in [18, 21] they are

x(0) = x′(0) = x′′(1) = 0, (1.8)

x(0) = x′(0) = x(1) = 0, in [28],

x(0) = x′(0), αx′(1) + βx′′(1) = λ, λ > 0, α, β ≥ 0, in [20],

in [22] they are (1.6) with A = B = C = 0,

x(0) = x(1) = x′′(1) = 0, in [23],

and in [27] they are either (1.2)(with A = B = 0), (1.5) or (1.6) (with A = 0).
Two-point BVPs for equations of the form

x′′′ = f (t, x, x′), t ∈ (0, 1),

have been studied by Y. Feng [7], the boundary conditions in this work are

x(1) = x′(0) = x′(1) = 0,

Y. Feng and S. Liu [8] (with boundary conditions (1.7)), D. O’Regan [27] (with (1.5)).
Y. Feng [6] and R. Ma and Y. Lu [25] have considered, respectively, BVPs for the equations

f (t, x, x′, x′′′) = 0 and x′′′ + Mx′′ + f (t, x) = 0, t ∈ (0, 1),

with (1.7).
The solvability of BVPs for the equation

x′′′ = f (t, x, x′, x′′), t ∈ (0, 1),

has been investigated by G. Chen [4], Z. Du et al. [5], J. Graef et al. [9], A. Granas et al. [10],
M. Grossinho et al. [11, 12], B. Hopkins and N. Kosmatov [13], Y. Li and Y. Li [19], F. Minhós
[26], J. Wang [29] and Z. Weili [31]. In [13, 19], the boundary conditions are

x(0) = x′(1) = x′′(1) = 0,
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in fact, in [13] the following ones

x(0) = x′(0) = x′′(1) = 0

are also considered. The boundary conditions [10] are (1.7), these in [12, 26, 31] include more
general linear ones, and in [4, 5, 11, 29] they are nonlinear.

M. Aïboudi and B. Brighi [1] and B. Brighi [2] have considered the equation

x′′′ + xx′′ + g(x′) = 0, t ∈ [0, ∞),

with boundary conditions similar to (1.3), and Z. Zhang [33] and Z. Zhang and J. Wang [34]
have studied the BVP

n(±x′′)n−1x′′′ + λxx′′ − x′g(x′) = 0, t ∈ [0, ∞), λ > 0,

x(0) = 0, x′(0) = 1, x′(+∞) = 0.

Along with the existence results of one, two or more solutions given in the mentioned
sources, nonexistence results can be found in [20, 26, 33], and uniqueness ones in [1, 2, 6, 31].
Positive or non-negative solutions are guaranteed in [6–8, 13, 18–23, 25, 32–34], negative or
nonpositive in [6, 8, 32], monotone ones in [8, 21, 32–34], and convex and/or concave solutions
have been established in [2, 33, 34].

In the works mentioned above, the main nonlinearity is a Carathéodory function on un-
bounded set, see [3, 13], or is defined and continuous on a set such that each dependent
variable changes in a left- and/or a right-unbounded set, see [1–13, 17–34]. The results are
obtained by using the upper and lower solutions technique [3–8, 11, 12, 17, 25, 26, 29, 31, 32],
Nagumo type growth conditions [5, 11, 12, 19, 26, 31], Lipschitz conditions [1, 2, 9], Green’s
functions [17,18,20,22–24], maximum principles [3,6,7], assumptions that the main nonlinear-
ity does not change its sign [18–23, 27] or is monotone with respect to some of the variables
[5, 17, 24].

We do not use the above tools. The imposed condition in this paper allows the main
nonlinearity to be defined on a bounded set, to be continuous on a suitable subset of its
domain and to change its sign. So, our results rely on the following hypotheses.

(H1) There are constants Fi, Li, i = 1, 2, and a sufficiently small σ > 0 such that

F2 + σ ≤ F1 ≤ A ≤ L1 ≤ L2 − σ, [F2, L2] ⊆ Dq,

f (t, x, p, q) ≤ 0 for (t, x, p, q) ∈ [0, 1]× Dx × Dp × [L1, L2], (1.9)

f (t, x, p, q) ≥ 0 for (t, x, p, q) ∈ [0, 1]× Dx × Dp × [F2, F1]. (1.10)

Besides, we will say that for some of the BVPs (1.1),(1.k), k = 2, 3, 4, 5, 6 (k = 2, 6 for short),
the condition (H2) holds for constants mi ≤ Mi, i = 0, 2, (these constants will be specified later
for each problem) if:

(H2) [m0 − σ, M0 + σ] ⊆ Dx, [m1 − σ, M1 + σ] ⊆ Dp, [m2 − σ, M2 + σ] ⊆ Dq, where σ is
as in (H1), and f (t, x, p, q) is continuous on [0, 1] × J, where J = [m0 − σ, M0 + σ] ×
[m1 − σ, M1 + σ]× [m2 − σ, M2 + σ].
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Such type of conditions have been used for studying the solvability of various problems
for first and second order differential equations, see P. Kelevedjiev and N. Popivanov [14] and
R. Ma et al. [16] for results and references. Here we adapt this approach for the considered
problems developing ideas partially announced in P. Kelevedjiev et al. [15] on the BVP (1.1),
(1.8). (H1) ensures priori bounds for x′′(t), x′(t) and x(t), in this order, for each eventual
solution x(t) ∈ C3[0, 1] to the families of BVPs for

x′′′ = λ f (t, x, x′, x′′), t ∈ (0, 1), (1.1)λ

with one of the boundary conditions (1.k), k = 2, 6, and (H2) gives the bounds for x′′′(t). The
priori bounds are needed for application of the global existence theorem from Section 2, and
the auxiliary results which guarantee them are given in Section 3. The results for problems
(1.1), (1.k), k = 2, 5, are in Section 4, and these for (1.1), (1.6) in Section 5.

2 Global existence theorem

Let E be a Banach space, Y be its convex subset, and U ⊂ Y be open in Y. The compact map
F : U → Y is called admissible if it is fixed point free on ∂U. By L∂U(U, Y) we denote the set
of all admissible maps of U into Y.

A map F ∈ L∂U(U, Y) is called essential if every map G ∈ L∂U(U, Y) with the property
G/∂U = F/∂U has a fixed point in U. Clearly, every essential map has a fixed point in U.

Theorem 2.1 ([10, Chapter I, Theorem 2.2]). Let p ∈ U be fixed and F ∈ L∂U(U, Y) be the constant
map F(x) = p for x ∈ U. Then F is essential.

Theorem 2.2 ([10, Chapter I, Theorem 2.6]). Suppose:

(i) F, G : U → Y are compact maps.

(ii) G ∈ L∂U(U, Y) is essential.

(iii) H(x, λ), λ ∈ [0, 1], is a compact homotopy joining F and G, i.e.

H(x, 1) = F(x) and H(x, 0) = G(x).

(iv) H(x, λ), λ ∈ [0, 1], is fixed point free on ∂U.

Then H(x, λ), λ ∈ [0, 1], has at least one fixed point in U and in particular there is a x0 ∈ U such that
x0 = F(x0).

Consider the BVP

x′′′ + a(t)x′′ + b(t)x′ + c(t)x = f (t, x, x′, x′′), t ∈ (0, 1), (2.1)

Vi(x) = ri, i = 1, 2, 3, (2.2)

where a, b, c ∈ C([0, 1], R), f : [0, 1]× Dx × Dp × Dq → R,

Vi(x) =
2

∑
j=0

[aijx(j)(0) + bijx(j)(1)], i = 1, 2, 3,

with constants aij and bij such that ∑2
j=0(a2

ij + b2
ij) > 0, i = 1, 2, 3, and ri ∈ R, i = 1, 2, 3.
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Besides, for λ ∈ [0, 1] consider the family of BVPs for

x′′′ + a(t)x′′ + b(t)x′ + c(t)x = g(t, x, x′, x′′, λ), t ∈ (0, 1), (2.1)λ

with boundary conditions (2.2), where the scalar function g is defined on [0, 1]× Dx × Dp ×
Dq × [0, 1], and a, b, c are as above.

Finally, let BC be the set of functions satisfying boundary conditions (2.2), C3
BC[0, 1] =

C3[0, 1] ∩ BC, BC0 be the set of functions satisfying the homogeneous boundary conditions
Vi(x) = 0, i = 1, 2, 3, and C3

BC0
[0, 1] = C3[0, 1] ∩ BC0.

We are now ready to state our basic existence result which is a variant of [10, Chapter I,
Theorem 5.1 and Chapter V, Theorem 1.2].

Theorem 2.3. Suppose:

(i) Problem (2.1)0, (2.2) has a unique solution x0 ∈ C3[0, 1].

(ii) Problems (2.1), (2.2) and (2.1)1, (2.2) are equivalent.

(iii) The map Lh : C3
BC0

[0, 1]→ C[0, 1] is one-to-one: here,

Lhx = x′′′ + a(t)x′′ + b(t)x′ + c(t)x.

(iv) Each solution x ∈ C3[0, 1] to family (2.1)λ, (2.2) satisfies the bounds

mi ≤ x(i) ≤ Mi for t ∈ [0, 1], i = 0, 3,

where the constants −∞ < mi, Mi < ∞, i = 0, 3, are independent of λ and x.

(v) There is a sufficiently small σ > 0 such that

[m0 − σ, M0 + σ] ⊆ Dx, [m1 − σ, M1 + σ] ⊆ Dp, [m2 − σ, M2 + σ] ⊆ Dq,

and g(t, x, p, q, λ) is continuous for (t, x, p, q, λ) ∈ [0, 1] × J × [0, 1]; mi, Mi, i = 0, 3, are as
in (iv).

Then boundary value problem (2.1), (2.2) has at least one solution in C3[0, 1].

Proof. For a start, introduce the set

U =
{

x ∈ C3
BC[0, 1] : mi − σ ≤ x(i) ≤ Mi + σ, i = 0, 3, on [0, 1]

}
and define the maps

j : C3
BC[0, 1]→ C2[0, 1] by jx = x,

L : C3
BC[0, 1]→ C[0, 1] by Lx = x′′′ + a(t)x′′ + b(t)x′ + c(t)x,

and for λ ∈ [0, 1]

Φλ : C2[0, 1]→ C[0, 1] by Φλx = g(t, x, x′, x′′, λ), x ∈ j(U).

Our first task is to establish that L−1 : C[0, 1] → C3
BC[0, 1] exists and is continuous. There-

fore, we use (iii) which implies that for each y ∈ C[0, 1] the BVP

x′′′ + a(t)x′′ + b(t)x′ + c(t)x = y(t),

Vi(x) = 0, i = 1, 2, 3,
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has a unique C3[0, 1]-solution of the form

x(t) = C∗1 x1(t) + C∗2 x2(t) + C∗3 x3(t) + η(t),

where xi(t), i = 1, 2, 3, are linearly independent solutions to the homogeneous equation

x′′′ + a(t)x′′ + b(t)x′ + c(t)x = 0, (2.3)

η(t) is a solution to the inhomogeneous equation, and (C∗1 , C∗2 , C∗3 ) is the unique solution to
the system

C1Vi(x1) + C2Vi(x2) + C3Vi(x3) = −Vi(η), i = 1, 2, 3.

The last means that det[Vi(xj)] 6= 0 and so the system

C1Vi(x1) + C2Vi(x2) + C3Vi(x3) = ri, i = 1, 2, 3,

also has a unique solution (C1, C2, C3). Then,

l(t) = C1x1(t) + C2x2(t) + C3x3(t)

is the unique C3[0, 1]-solution to the homogeneous equation (2.3) satisfying the inhomoge-
neous boundary conditions

Vi(x) = ri, i = 1, 2, 3.

As a result, conclude that L−1 exists and L−1y = L−1
h y + l for each y ∈ C[0, 1]. To show that

L−1 is continuous observe that Lh is bounded because

‖Lhx‖C[0,1] ≤ ‖x′′′‖C[0,1] + S2‖x′′‖C[0,1] + S1‖x′‖C[0,1] + S0‖x‖C[0,1]

≤ ‖x‖C3[0,1] + S2‖x‖C3[0,1] + S1‖x‖C3[0,1] + S0‖x‖C3[0,1]

≤ (1 + S2 + S1 + S0)‖x‖C3[0,1],

where S2 = max[0,1] |a(t)|, S1 = max[0,1] |b(t)|, S0 = max[0,1] |c(t)|. Thus, the linear map Lh is
continuous. Then, L−1

h is continuous and so L−1 is also continuous.
Now, introduce the homotopy Hλ : U × [0, 1] → C3

BC[0, 1] defined by Hλ = L−1Φλ j.
The map j is a completely continuous embedding and U is a bounded set, hence the set
j(U) is compact. The set Φλ(j(U)), λ ∈ [0, 1], is also compact since the map Φλ is continu-
ous on j(U) in view of (v). Finally, because of the continuity of L−1 proved above, the set
L−1(Φλ(j(U))), λ ∈ [0, 1], is compact. Thus, the homotopy is compact. For its fixed points we
have

x = L−1Φλjx

and
Lx = Φλjx

which means that the fixed points of Hλ are precisely the solutions of family (2.1)λ, (2.2) and
in view of (iv) we conclude that the homotopy is fixed point free on the boundary of U. Using
(i), we see that H0 = x0, x0 ∈ U, is essential by Theorem 2.1. Then, H1 is also essential by
Theorem 2.2 and so it has a fixed point, that is, (2.1)λ, (2.2) has a solution in C3[0, 1] when
λ = 1, and, by (ii), problem (2.1), (2.2) has a solution in C3[0, 1].
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3 Auxiliary results

The results stated in this part guarantee the bounds from (iv) of Theorem 2.3.

Lemma 3.1. Let (H1) hold. Then every solution x ∈ C3[0, 1] to a BVP for (1.1)λ with one of the
boundary conditions (1.k), k = 2, 6, satisfies the bounds

F1 ≤ x′′(t) ≤ L1 on [0, 1].

Proof. Assume on the contrary that x′′(t) > L1 for some t ∈ (0, 1]. Then, the continuity of
x′′(t) on [0, 1] together with x′′(0) ≤ L1 implies that the set

S− = {t ∈ [0, 1] : L1 < x′′(t) ≤ L2}

is not empty and there is a γ ∈ S− such that

x′′′(γ) > 0.

On the other hand, since x(t) is a C3[0, 1]-solution to (1.1)λ, we have in particular

x′′′(γ) = λ f (γ, x(γ), x′(γ), x′′(γ)).

Now, from (γ, x(γ), x′(γ), x′′(γ)) ∈ S− × R2 × (L1, L2] and (1.9) it follows

x′′′(γ) ≤ 0,

a contradiction. Thus,
x′′(t) ≤ L1 for t ∈ [0, 1].

In an analogous way, using (1.10), we can prove that

F1 ≤ x′′(t) for t ∈ [0, 1].

Lemma 3.2. Let (H1) hold. Then every solution x ∈ C3[0, 1] to a BVP for (1.1)λ with one of the
boundary conditions (1.k), k = 2, 5, satisfies the bounds

|x(t)| ≤ |A|+ |B|+ max{|F1|, |L1|}, t ∈ [0, 1],

|x′(t)| ≤ |B|+ max{|F1|, |L1|}, t ∈ [0, 1]. (3.1)

Proof. Let firstly the solution satisfies x′(0) = B. Then, by the mean value theorem, for each
t ∈ (0, 1] there is a ξ ∈ (0, t) such that

x′(t)− x′(0) = x′′(ξ)t

from where, using Lemma 3.1, derive (3.1). If x′(1) = B, we obtain similarly that for each
t ∈ [0, 1) there is a η ∈ (t, 1) with the property

x′(1)− x′(t) = x′′(η)(1− t),

which implies (3.1).
Using again the mean value theorem and (3.1), we get the bound for |x(t)| in both cases

x(1) = C and x(0) = C.
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Lemma 3.3. Let A, B ≤ 0, C ≥ 0 and (H1) hold with L1 ≤ 0. Then each solution x ∈ C3[0, 1] to
(1.1)λ, (1.2) satisfies the bounds

C ≤ x(t) ≤ C− B− F1, t ∈ [0, 1],

B + F1 ≤ x′(t) ≤ B, t ∈ [0, 1]. (3.2)

Proof. From Lemma 3.1 we know that

F1 ≤ x′′(t) ≤ L1 ≤ 0 on [0, 1].

Then, for t ∈ (0, 1] we get ∫ t

0
F1ds ≤

∫ t

0
x′′(s)ds ≤

∫ t

0
L1ds,

which yields consecutively F1t ≤ x′(t)− B ≤ L1t, t ∈ [0, 1], and F1 ≤ x′(t)− B ≤ 0, t ∈ [0, 1],
from where (3.2) follows. Similarly, integrating (3.2) from t ∈ [0, 1) to 1 we get

(B + F1)(1− t) ≤ x(1)− x(t) ≤ B(1− t), t ∈ [0, 1],

which implies the bounds for x(t).

Using similar arguments to those in the proof of Lemma 3.3, we can also show that the
following three auxiliary results are held.

Lemma 3.4. Let A, B, C ≥ 0 and (H1) hold with F1 ≥ 0. Then each solution x ∈ C3[0, 1] to (1.1)λ,
(1.3) satisfies the bounds

C ≤ x(t) ≤ B + C + L1, t ∈ [0, 1],

B ≤ x′(t) ≤ B + L1, t ∈ [0, 1].

Lemma 3.5. Let A, C ≥ 0, B ≤ 0 and (H1) hold with F1 ≥ 0. Then each solution x ∈ C3[0, 1] to
(1.1)λ, (1.4) satisfies the bounds

C ≤ x(t) ≤ C− B + L1, t ∈ [0, 1],

B− L1 ≤ x′(t) ≤ B, t ∈ [0, 1].

Lemma 3.6. Let A ≤ 0, B, C ≥ 0 and (H1) hold with L1 ≤ 0. Then each solution x ∈ C3[0, 1] to
(1.1)λ, (1.5) satisfies the bounds

C ≤ x(t) ≤ B + C− F1, t ∈ [0, 1],

B ≤ x′(t) ≤ B− F1, t ∈ [0, 1].

Lemma 3.7. Let (H1) hold. Then each solution x ∈ C3[0, 1] to (1.1)λ, (1.6) satisfies the bounds

|x(t)| ≤ |B|+ |C− B|+ max{|F1|, |L1|}, t ∈ [0, 1],

|x′(t)| ≤ |C− B|+ max{|F1|, |L1|}, t ∈ [0, 1].

Proof. It is clear, there is a µ ∈ (0, 1) with the property x′(µ) = C− B. Then, for each t ∈ [0, µ)

there is a ξ ∈ (t, µ) such that

x′(µ)− x′(t) = x′′(ξ)(µ− t),
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which yields
|x′(t)| ≤ |C− B|+ max{|F1|, |L1|}, t ∈ [0, µ].

Similarly establish that the same bound is valid for t ∈ [µ, 1]. Using again the mean value
theorem, we obtain that for each t ∈ (0, 1] and some η ∈ (0, t) we have

x(t)− x(0) = x′(η)t.

This together with the obtained bound for |x′(t)| gives the bound for |x(t)|.

Lemma 3.8. Let A ≤ 0, B, C ≥ 0 and (H1) hold with L1 ≤ 0. Then each solution x ∈ C3[0, 1] to
(1.1)λ, (1.6) satisfies the bounds

min{B, C} ≤ x(t) ≤ B + |C− B|+ |F1|, t ∈ [0, 1],

C− B + F1 ≤ x′(t) ≤ C− B− F1, t ∈ [0, 1].

Proof. By Lemma 3.1, F1 ≤ x′′(t) ≤ L1 on [0, 1]. Clearly, x′(µ) = C − B for some µ ∈ (0, 1).
Then, ∫ µ

t
F1ds ≤

∫ µ

t
x′′(s)ds ≤

∫ µ

t
L1ds, t ∈ [0, µ),

gives
C− B ≤ x′(t) ≤ C− B− F1, t ∈ [0, µ],

and ∫ t

µ
F1ds ≤

∫ t

µ
x′′(s)ds ≤

∫ t

µ
L1ds, t ∈ (µ, 1],

implies
C− B + F1 ≤ x′(t) ≤ C− B, t ∈ [µ, 1].

As a result,
C− B + F1 ≤ x′(t) ≤ C− B− F1, t ∈ [0, 1].

Using Lemma 3.7, conclude

|x(t)| ≤ B + |C− B|+ |F1| for t ∈ [0, 1].

But, x(t) is concave on [0, 1] because x′′(t) ≤ L1 ≤ 0 for t ∈ [0, 1]. This fact together with
B, C ≥ 0 means that x(t) ≥ min{B, C} on [0, 1], which completes the proof.

4 Problems (1.1), (1.2)–(1.5)

Theorem 4.1. Let (H1) hold and (H2) hold for

M0 = |A|+ |B|+ max{|F1|, |L1|}, m0 = −M0,

M1 = |B|+ max{|F1|, |L1|}, m1 = −M1, m2 = F1, M2 = L1.

Then each BVP for equation (1.1) with one of the boundary conditions (1.k), k = 2, 5, has at least one
solution in C3[0, 1].
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Proof. We will show that each BVP for (1.1)λ, λ ∈ [0, 1], with one of the boundary conditions
(1.k), k = 2, 5, satisfies all hypotheses of Theorem 2.3. It is not hard to check that (i) holds for
each BVP for (1.1)0 with one of the boundary conditions (1.k), k = 2, 5. Obviously, each BVP
for (1.1) is equivalent to the BVP for (1.1)1 with the same boundary conditions, that is, (ii) is
satisfied. Because now Lh = x′′′, (iii) also holds. Further, for each solution x(t) ∈ C3[0, 1] to a
BVP for (1.1)λ, λ ∈ [0, 1], with one of the boundary conditions (1.k), k = 2, 5, we have

mi ≤ x(i)(t) ≤ Mi, t ∈ [0, 1], i = 0, 1, by Lemma 3.2,

m2 ≤ x′′(t) ≤ M2, t ∈ [0, 1], by Lemma 3.1.

Because of the continuity of f on [0, 1]× J there are constants m3 and M3 such that

m3 ≤ λ f (t, x, p, q) ≤ M3 for λ ∈ [0, 1] and (t, x, p, q) ∈ [0, 1]× J.

Since (x(t), x′(t), x′′(t)) ∈ J for t ∈ [0, 1], the equation (1.1)λ implies

m3 ≤ x′′′(t) ≤ M3, t ∈ [0, 1].

Hence, (iv) also holds. Finally, (v) follows from the continuity of f on the set J. So, we can
apply Theorem 2.3 to conclude that the assertion is true.

The following results guarantee C3[0, 1]-solutions with important properties.

Theorem 4.2. Let A ≤ 0, B < 0, C > 0 (B = C = 0). Suppose (H1) holds with L1 ≤ 0 and (H2)
holds for

m0 = C, M0 = C− B− F1, m1 = B + F1, M1 = B, m2 = F1, M2 = L1.

Then BVP (1.1), (1.2) has at least one positive, decreasing (non-negative, non-increasing), concave
solution in C3[0, 1].

Proof. Following the proof of Theorem 4.1, we establish that (1.1), (1.2) has a solution x(t) ∈
C3[0, 1]. Now, the bounds

m0 ≤ x(i)(t) ≤ M0, t ∈ [0, 1], i = 0, 1, 2,

follow from Lemmas 3.3 and 3.1. These lemmas imply in particular x(t)≥C>0, x′(t)≤B<0
(x(t) ≥ 0, x′(t) ≤ 0) and x′′(t) ≤ L1 ≤ 0 for t ∈ [0, 1], which yields the assertion.

Theorem 4.3. Let A ≥ 0, B > 0, C > 0, (B = C = 0). Suppose (H1) holds with F1 ≥ 0 and (H2)
holds for

m0 = C, M0 = B + C + L1, m1 = B, M1 = B + L1, m2 = F1, M2 = L1.

Then BVP (1.1), (1.3) has at least one positive, increasing (non-negative, non-decreasing), convex
solution in C3[0, 1].

Proof. Using Lemmas 3.4 and 3.1, as in the proof of Theorem 4.1 we establish that the con-
sidered problem has a solution x(t) ∈ C3[0, 1]. Now, for t ∈ [0, 1] we have x(t) ≥ C > 0,
x′(t) ≥ B > 0 (x(t) ≥ 0, x′(t) ≥ 0), by Lemma 3.4, and x′′(t) ≥ F1 ≥ 0, by Lemma 3.1, from
where it follows that x(t) has the desired properties.
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Theorem 4.4. Let A ≥ 0, B < 0, C > 0, (B = C = 0). Suppose (H1) holds with F1 ≥ 0 and (H2)
holds for

m0 = C, M0 = C− B + L1, m1 = B− L1, M1 = B, m2 = F1, M2 = L1.

Then BVP (1.1), (1.4) has at least one positive, decreasing (non-negative, non-increasing), convex
solution in C3[0, 1].

Proof. Following again the proof of Theorem 4.1 and using Lemmas 3.5 and 3.1, we establish
that there is a solution x(t) ∈ C3[0, 1] to (1.1), (1.4). In fact, from Lemma 3.5 we know that
x(t) ≥ C > 0, x′(t) ≤ B < 0 (x(t) ≥ 0, x′(t) ≤ 0), t ∈ [0, 1], and from Lemma 3.1 have
x′′(t) ≥ F1 ≥ 0, t ∈ [0, 1], which completes the proof.

Theorem 4.5. Let A ≤ 0, B > 0, C > 0 (B = C = 0). Suppose (H1) holds with L1 ≤ 0 and (H2)
holds for

m0 = C, M0 = B + C− F1, m1 = B, M1 = B− F1, m2 = F1, M2 = L1.

Then BVP (1.1), (1.5) has at least one positive, increasing (non-negative, non-decreasing), concave
solution in C3[0, 1].

Proof. Following again the proof of Theorem 4.1 and using Lemmas 3.6 and 3.1, we establish
that (1.1), (1.5) has a solution x(t) ∈ C3[0, 1]. From these lemmas we know that x(t) ≥ C > 0,
x′(t) ≥ B > 0 (x(t) ≥ 0, x′(t) ≥ 0) and x′′(t) ≤ L1 ≤ 0 for t ∈ [0, 1], which completes the
proof.

We will illustrate the application of the obtained results.

Example 4.6. Consider the BVPs for equations of the form

x′′′(t) = Pn(x′′), t ∈ (0, 1), (4.1)

with one of the boundary conditions (1.k), k = 2, 5, where the polynomial Pn(q), n ≥ 2, has
simple zeros q1 and q2 such that q1 > A > q2.

Fix some θ > 0 with the properties q1 − θ ≥ A ≥ q2 + θ and

Pn(q) 6= 0 on (qi − θ, qi + θ) \ qi, i = 1, 2.

Consider the case

Pn(q) < 0 for q ∈ (q1, q1 + θ] and Pn(q) > 0 for q ∈ [q2 − θ, q2);

the other cases for the sign of Pn(q) around the zeros can be studied by analogy. In this case,
if we choose, for example, F2 = q2 − θ, F1 = q2, L1 = q1, L2 = q1 + θ and σ = θ/2, (H1) and
(H2) hold and so each BVP for (4.1) with one of the boundary conditions (1.k), k = 2, 5, has a
solution in C3[0, 1] by Theorem 4.1.

Example 4.7. Consider the BVP

x′′′(t) =
t(2− x′′)

√
625− x′2√

900− x2
√

100− x′′2
, t ∈ (0, 1),

x′′(0) = 3, x′(1) = −1, x(1) = 2.

It is not hard to see that if, for example, F2 = 0, F1 = 1, L1 = 4, L2 = 5 and σ = 0.1 this
problem has a positive, decreasing, convex solution in C3[0, 1] by Theorem 4.4; notice, here J
is bounded.
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Example 4.8. Consider the BVP

x′′′(t) = (x′′ + 5)(x′′ − 1)
√

400− x′2, t ∈ (0, 1),

x′′(0) = −4, x′(1) = 1, x(0) = 2.

The assumptions of Theorem 4.5 are satisfied for F2 = −7, F1 = −6, L1 = −2, L2 = −1
and σ = 0.1, for example. Thus, the considered problem has a positive, increasing, concave
solution in C3[0, 1] by Theorem 4.5.

5 Problem (1.1), (1.6)

Theorem 5.1. Let (H1) hold and (H2) hold for

M0 = |B|+ |C− B|+ max{|F1|, |L1|}, m0 = −M0,

M1 = |C− B|+ max{|F1|, |L1|}, m1 = −M1, m2 = F1, M2 = L1.

Then BVP (1.1), (1.6) has at least one solution in C3[0, 1].

Proof. As in the proof of Theorem 4.1, we check that family (1.1)λ, (1.6) and BVP (1.1), (1.6)
satisfy all hypotheses of Theorem 2.3 and so the assertion is true. Moreover, now each C3[0, 1]-
solution x(t) to (1.1)λ, (1.6) satisfies the bounds

m0 ≤ x(t) ≤ M0 on [0, 1], by Lemma 3.7,

m1 ≤ x′(t) ≤ M1 on [0, 1], by Lemma 3.7,

m2 ≤ x′′(t) ≤ M2 on [0, 1], by Lemma 3.1.

Theorem 5.2. Let A ≤ 0, B, C > 0 (B, C = 0). Suppose (H1) holds with L1 ≤ 0, and (H2) holds for

m0 = min{B, C}, M0 = B + |C− B| − F1,

m1 = C− B + F1, M1 = C− B− F1, m2 = F1, M2 = L1.

Then BVP (1.1), (1.6) has at least one positive (non-negative), concave solution in C3[0, 1].

Proof. Following the proof of Theorem 4.1 and using Lemmas 3.8 and 3.1, we establish that
there is a solution x(t) ∈ C3[0, 1] to (1.1), (1.6). In fact, from Lemmas 3.8 and 3.1 we know
that x(t) ≥ min{B, C} > 0 (x(t) ≥ 0) and x′′(t) ≤ L1 ≤ 0 for t ∈ [0, 1], which completes the
proof.

Corollary 5.3. Let A ≤ 0, C > B > 0. Suppose (H1) holds with L1 ≤ 0 and F1 > B − C
(F1 = B− C), and (H2) holds for mi, Mi, i = 0, 1, 2, as in Theorem 5.2. Then BVP (1.1), (1.6) has at
least one positive, increasing (non-decreasing), concave solution in C3[0, 1].

Proof. By Theorem 5.2, (1.1), (1.6) has a positive, concave solution x(t) ∈ C3[0, 1]. Moreover,
Lemma 3.8 implies x′(t) ≥ C − B + F1 > 0 (x′(t) ≥ 0) for t ∈ [0, 1], which completes the
proof.

Corollary 5.4. Let A ≤ 0, B = C > 0 (B = C = 0). Suppose (H1) holds with L1 ≤ 0, and (H2) holds
for mi, Mi, i = 0, 1, 2, as in Theorem 5.2. Then BVP (1.1), (1.6) has at least one positive (non-negative),
concave solution x(t) ∈ C3[0, 1] for which there is a µ ∈ (0, 1) with the property x(µ) = max[0,1] x(t).
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Proof. A positive (non-negative), concave solution x(t) ∈ C3[0, 1] exists by Theorem 5.2. By
the mean value theorem there is a µ ∈ (0, 1) such that x′(µ) = C − B = 0, which yields the
assertion.

Example 5.5. Consider the BVP

x′′′(t) = −(x′′ + 3)
√

900− x2, t ∈ (0, 1),

x′′(0) = −4, x(0) = 1, x(1) = 9.

The assumptions of Corollary 5.3 are satisfied for F2 = −7, F1 = −6, L1 = −1, L2 = −2
and σ = 0.1, for example. Thus, the considered problem has a positive, increasing, concave
solution in C3[0, 1].
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