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Abstract. In the present paper the concept of uniform exponential trisplitting for
skew-product flows in Banach space is considered. This concept is a generalisation
of the well-known concept of uniform exponential trichotomy. Connections between
these concepts are presented and some illustrating examples prove that these are dis-
tinct. Also, we present necessary and sufficient conditions for the uniform exponential
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terisation in terms of Lyapunov sequences is given.
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1 Introduction

The notion of linear discrete/continuous skew-product semiflow associated to a linear non-
autonomous difference/differential equation plays a central role in a large part of the theory of
dynamical systems, especially in the infinite-dimensional case. Starting with the famous work
[22], a significant number of papers were published regarding this issue. One of the important
problems of asymptotic behaviour for skew-product semiflow is exponential dichotomy. The
interested readers should refer to [6, 7, 11, 14, 16] and the references therein. See also [1, 12, 13]
for the case of difference equations.

A considerable progression has been achieved in the direction of non-invertible systems
since 1970’s starting with paper [8]. Regarding this, in [8] this phenomenon is described as
follows:

“. . . our main concern is, therefore, to develop our analysis without any assumption on the
invertibility of the ‘transition operators’. . . ”
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This idea that the system defined on the positive integers should not be invertible is natural
and has been widely used recently. Later, instead of dichotomy concept for non-invertible
systems motivated by the fact that there are equations whose backward solutions are not
guaranteed to exist has been considered in [2] the splitting concept for difference equations.
We refer to [18] for results done in the same direction. For further reading and applications
for the case of skew-product semiflows one may consult the monograph [21] and references
therein.

In connection with the theory of exponential dichotomies the notion of exponential tri-
chotomy can be shown to yield as a natural generalization. Roughly speaking, a linear dy-
namics admits an exponential trichotomy if and only if two appropriate linear shifts admit
exponential dichotomies. We should mention [10, 19, 20] where trichotomy theory for dif-
ference equations is presented. Using above mentioned concept, in [15] is used to relatively
compare the solutions of two difference equations, one linear and other semi linear. Also, in
[3, 17] is presented the concept for skew-product semiflows. In this line, the results dealing
with non-invertible systems are almost inexistens and that motivates us to proceed in this
direction. Inspired by the above, we consider two main problems in this paper:

(a) how to define the notion of exponential trichotomy in a more general setting;

(b) how to construct Lyapunov sequences and how to provide characterizations of Datko
for both invertible/non-invertible dynamical syatems.

The first issue regarding the notion of exponential trichotomy in a more general setting is
pointed out by a motivating example which shows that the relation between the growth rates
from the classical definition of exponential trichotomy for skew-product semiflow considered
in [17] is too restrictive. Thus, we will consider two notions of exponential trisplitting for
discrete skew-product semiflows. Those concepts use two ideas of projections sequences:
invariant (without any assumptions regarding the invertibility of the dynamical system) and
strongly invariant for the respective dynamical system. In addition, we present an example of
a dynamical system with invariant family of projections, but not strongly invariant, hence the
study of trisplitting for noninvertible dynamical systems is of interest.

Second, based on Lyapunov norms one reveals the construction of Lyapunov sequences for
both invertible/non-invertible dynamical systems. It is important to notice here that Lyapunov
sequences can be defined without having any regularity condition verified for the dynamical
systems. As a particular case we recover these characterizations for the classical notion of
exponential trichotomy. Also, we give characterizations of Datko type, these ones can be
partly seen as a development of somewhat related approaches from [9]. This paper is a
companion of our earlier work [5] where some preliminary results have been presented.

Outline. The remainder of the paper is organized as follows. In the next section the notion
of uniform exponential trisplitting with invariant projectors is considered and a counterex-
ample is presented showing that the inequality between the growth rates from the classical
definition of uniform exponential trichotomy is not always true. In Section 3, the results from
Section 2 are extended, considering strongly invariant projectors. Finally, some concluding
remarks are presented in Section 4.

2 Uniform exponential trisplitting with invariant projectors

Let X be a metric space, V a Banach space and denote by B(V) the Banach algebra of all
bounded linear operators on V. The norm on V and on B(V) will be denoted by ‖ · ‖. The
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identity operator on V is denoted I. Also, we consider Y = X×V.

Definition 2.1. A mapping S : N× X → X is called a discrete semiflow on X, if

S(0, x) = x, for every x ∈ X;

S(m, S(n, x)) = S(m + n, x), for all (m, n, x) ∈N2 × X.

Definition 2.2. We say that C : N× X → B(V) is a discrete cocycle over the discrete semiflow
S : N× X → X on the space Y if

C(0, x) = I, for every x ∈ X;

C(m, S(n, x))C(n, x) = C(m + n, x), for all (m, n, x) ∈N2 × X.

The discrete linear skew-product semiflow associated with the above cocycle is the dynamical
system π = (S, C) on Y = X defined by

π : N×Y → Y, π(n, x, v) = (S(n, x), C(n, x)v).

Definition 2.3. A mapping P : X → B(V) is called a family of projectors on the Banach space V if

P2(x) = P(x), for every x ∈ X.

Definition 2.4. A family of projectors P : X → B(V) is said to be invariant for the discrete cocycle
C if

C(n, x)P(x) = P(S(n, x))C(n, x), for all (n, x) ∈N× X.

Definition 2.5. If P1, P2, P3 : X → B(V) are three families of projectors on V, then we say that
P = {P1, P2, P3} is

(i) orthogonal if
P1(x) + P2(x) + P3(x) = I, for every x ∈ X;

Pk(x)Pj(x) = 0, for all x ∈ X, k, j ∈ {1, 2, 3}, k 6= j.

(ii) invariant for C if Pj is invariant for C, for all j ∈ {1, 2, 3}.

We further consider C : N × X → B(V), a discrete cocycle over the discrete semiflow
S : N× X → X on Y and P = {P1, P2, P3} orthogonal and invariant for C.

Definition 2.6. We say that the pair (C,P) has uniform exponential trisplitting if there exist
some constants N ≥ 1 and α, β, γ, δ ∈ R, with α < β and γ < δ such that

‖C(n, x)P1(x)v‖ ≤ Neαn‖P1(x)v‖, (2.1)

eβn‖P2(x)v‖ ≤ N‖C(n, x)P2(x)v‖, (2.2)

eγn‖C(n, x)P3(x)v‖ ≤ N‖P3(x)v‖, (2.3)

‖P3(x)v‖ ≤ Neδn‖C(n, x)P3(x)v‖, (2.4)

for all (n, x, v) ∈N×Y.
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Remark 2.7.

(i) If we consider in the previous definition α < 0 < β and γ < 0 < δ, then we obtain for
the pair (C,P) the classical definition of uniform exponential trichotomy (see [17]). Also, if
P3(x) = 0 we recover the notion of uniform exponential dichotomy;

(ii) If P3(x) = 0 for all x ∈ X, then for the pair (C,P) we recall the definition of uniform
exponential splitting. For a deeper discussion regarding the splitting concept we refer the
reader to [18] and the reference therein;

Remark 2.8. The pair (C,P) is uniformly exponentially trichotomic if and only if there exist
N ≥ 1, ν1, ν2 > 0 such that

‖C(n, x)P1(x)v‖ ≤ Ne−ν1n‖P1(x)v‖,
eν1n‖P2(x)v‖ ≤ N‖C(n, x)P2(x)v‖,

‖C(n, x)P3(x)v‖ ≤ Neν2n‖P3(x)v‖,
e−ν2n‖P3(x)v‖ ≤ N‖C(n, x)P3(x)v‖,

for all (n, x, v) ∈N×Y.

The following example shows a connection between the concepts considered above, i.e.,
if the pair (C,P) admits a uniform exponential trichotomy then also admits a uniform expo-
nential trisplitting. The converse is not generally true. For the particular case P3(x) = 0, we
recover the notion of uniform exponential trispitting. In this way it is also pointed out that
also the notions the uniform exponential dichotomy and uniform exponential splitting are not
equivalent. For a deeper analysis of this, the reader is referred to [4].

Example 2.9. Let X = R+ and V = l∞(N, R) with the norm

‖v‖ = sup
n∈N

|vn|.

For 0 < a < b, c < 0 and S : N× X → X we consider the discrete semiflow defined by
S(n, x) = n + x for all (n, x) ∈N× X.

Also, we consider C : N× X → B(V) given by

C(n, x)v = (v0ena, v1enb, v2e−nc, v3ena, v4enb, v5e−nc, . . . ).

The family of projectors P = {P1, P2, P3} is given by

P1(x)v = (v0, 0, 0, v3, 0, 0, . . . ),

P2(x)v = (0, v1, 0, 0, v4, 0, 0, . . . ),

P3(x)v = (0, 0, v2, 0, 0, v5, 0, 0, . . . ).

Thus, for all (n, x, v) ∈N×Y, the following relations hold

‖C(n, x)P1(x)v‖ ≤ ena‖P1(x)v‖;
‖C(n, x)P2(x)v‖ ≥ enb‖P2(x)v‖;

e2nc‖C(n, x)P3(x)v‖ = enc‖P3(x)v‖ ≤ ‖P3(x)v‖;
enc‖C(n, x)P3(x)v‖ ≥ ‖P3(x)v‖.



Uniform exponential trisplitting 5

Hence, (C,P) admits an uniform exponential trisplitting.
Assume that there exist some constants N ≥ 1 and α < 0 such that

‖C(n, x)P1(x)v‖ ≤ Neαn‖P1(x)v‖,

for all (n, x, v) ∈ N× Y. This leads to ena ≤ Neαn, for all n ∈ N, which is a contradiction.
Thus, we can conclude that the pair (C,P) is not uniformly exponentially trichotomic.

Proposition 2.10. The pair (C,P) admits uniform exponential trisplitting if and only if there exist
some constants N ≥ 1 and α, β, γ, δ ∈ R with α < β, γ < δ such that

‖C(m + n, x)P1(x)v‖ ≤ Neαm‖C(n, x)P1(x)v‖, (2.5)

eβm‖C(n, x)P2(x)v‖ ≤ N‖C(m + n, x)P2(x)v‖, (2.6)

eγm‖C(m + n, x)P3(x)v‖ ≤ N‖C(n, x)P3(x)v‖, (2.7)

‖C(n, x)P3(x)v‖ ≤ Neδm‖C(m + n, x)P3(x)v‖, (2.8)

for all (m, n, x, v) ∈N2 ×Y.

Proof. The proof is straightforward considering x → S(n, x) and v→ C(n, x)v in the relations
(2.1)-(2.4) and n = 0 for the sufficiency part.

Definition 2.11. The pair (C,P) admits uniform exponential trisplitting of Datko type if there
exist some constants D ≥ 1 and µ, ν, ω, η ∈ R with µ < ν, ω < η such that

+∞

∑
k=n

eµ(n−k)‖C(k, x)P1(x)v‖ ≤ D‖C(n, x)P1(x)v‖, (2.9)

n

∑
k=0

eν(n−k)‖C(k, x)P2(x)v‖ ≤ D‖C(n, x)P2(x)v‖, (2.10)

+∞

∑
k=n

eω(k−n)‖C(k, x)P3(x)v‖ ≤ D‖C(n, x)P3(x)v‖, (2.11)

n

∑
k=0

eη(k−n)‖C(k, x)P3(x)v‖ ≤ D‖C(n, x)P3(x)v‖, (2.12)

for all (n, x, v) ∈N×Y.

In particular, if µ < 0 < ν and ω < 0 < η, then we have that the pair (C,P) admits uniform
exponential trichotomy of Datko type.

Remark 2.12. The pair (C,P) admits uniform exponential trichotomy of Datko type if and
only if there are some constants D ≥ 1 and d1, d2 > 0 such that

+∞

∑
k=n

ed1(k−n)‖C(k, x)P1(x)v‖ ≤ D‖C(n, x)P1(x)v‖, (2.13)

n

∑
k=0

ed1(n−k)‖C(k, x)P2(x)v‖ ≤ D‖C(n, x)P2(x)v‖, (2.14)

+∞

∑
k=n

ed2(n−k)‖C(k, x)P3(x)v‖ ≤ D‖C(n, x)P3(x)v‖, (2.15)

n

∑
k=0

ed2(k−n)‖C(k, x)P3(x)v‖ ≤ D‖C(n, x)P3(x)v‖, (2.16)

for all (n, x, v) ∈N×Y.
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Theorem 2.13. The pair (C,P) has uniform exponential trisplitting if and only if (C,P) has uniform
exponential trisplitting of Datko type.

Proof. Necessity. From Proposition 2.10 we have that there are N ≥ 1 and α, β, γ, δ ∈ R with
α < β, γ < δ such that (C,P) has uniform exponential trisplitting.

We consider µ, ν, ω, η ∈ R, α < µ < ν < β, ω < γ < δ < η,

D = 1 + N
(

eµ

eµ − eα
+

eβ

eβ − eν
+

eγ

eγ − eω
+

eη

eη − eδ

)
.

Further, in order to prove the implication between (2.5)–(2.8) and (2.9)–(2.12) we have the
following situations. First, for all (n, x, v) ∈N×Y we obtain

+∞

∑
k=n

eµ(n−k)‖C(k, x)P1(x)v‖ ≤ N
+∞

∑
k=n

eµ(n−k)eα(k−n)‖C(n, x)P1(x)v‖

= Nen(µ−α) e(α−µ)n

1− eα−µ
‖C(n, x)P1(x)v‖

=
Neµ

eµ − eα
‖C(n, x)P1(x)v‖

≤ D‖C(n, x)P1(x)v‖.

Similarly, it follows that
n

∑
k=0

eν(n−k)‖C(k, x)P2(x)v‖ ≤ N
n

∑
k=0

eν(n−k)e−β(n−k)‖C(n, x)P2(x)v‖

≤ Nen(ν−β) e(β−ν)(n+1)

eβ−ν − 1
‖C(n, x)P2(x)v‖

=
Neβ

eβ − eν
‖C(n, x)P2(x)v‖

≤ D‖C(n, x)P2(x)v‖,

for all (n, x, v) ∈N×Y.
Next, we deduce that

+∞

∑
k=n

eω(k−n)‖C(k, x)P3(x)v‖ ≤ N
+∞

∑
k=n

eω(k−n)e−γ(k−n)‖C(n, x)P3(x)v‖

= Nen(γ−ω) e(ω−γ)n

1− eω−γ
‖C(n, x)P3(x)v‖

=
Neγ

eγ − eω
‖C(n, x)P3(x)v‖

≤ D‖C(n, x)P3(x)v‖.

Finally, we have
n

∑
k=0

eη(k−n)‖C(k, x)P3(x)v‖ ≤ N
n

∑
k=0

eη(k−n)eδ(n−k)‖C(n, x)P3(x)v‖

≤ Nen(δ−η) e(η−δ)(n+1)

eη−δ − 1
‖C(n, x)P3(x)v‖

=
Neη

eη − eδ
‖C(n, x)P3(x)v‖

≤ D‖C(n, x)P3(x)v‖.
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for all (n, x, v) ∈N×Y.

Sufficiency. Let (n, x, v) ∈N×Y. We observe that

e−µn‖C(n, x)P1(x)v‖ ≤
+∞

∑
k=0

e−µk‖C(k, x)P1(x)v‖ ≤ D‖P1(x)v‖;

and

eνn‖P2(x)v‖ ≤
n

∑
k=0

eν(n−k)‖C(k, x)P2(x)v‖ ≤ D‖C(n, x)P2(x)v‖.

Using a similar technique, we have that

eωn‖C(n, x)P3(x)v‖ ≤
+∞

∑
k=0

eωk‖C(k, x)P3(x)v‖ ≤ D‖P3(x)v‖,

and

e−ηn‖P3(x)v‖ ≤
n

∑
k=0

eη(k−n)‖C(k, x)P3(x)v‖ ≤ D‖C(n, x)P3(x)v‖,

for all (n, x, v) ∈N×Y. It follows that the pair (C,P) admits uniform exponential trisplitting,
which ends the proof.

Corollary 2.14. The pair (C,P) is uniformly exponentially trichotomic if and only if (C,P) has
uniform exponential trichotomy of Datko type.

Proof. This is seen from Theorem 2.13 and Remark 2.12.

Definition 2.15. We say that L = (L1, L2, L3) : N× Y → R3
+ is Lyapunov function for the pair

(C,P) if there exist some constants a, b, c, d ∈ R, with a < b, c < d such that

L1(n, x, P1(x)v) +
n−1

∑
k=0

e−ak‖C(k, x)P1(x)v‖ ≤ L1(0, x, P1(x)v), (2.17)

L1(0, x, P2(x)v) +
n−1

∑
k=0

eb(n−k)‖C(k, x)P2(x)v‖ ≤ L1(n, x, P2(x)v), (2.18)

L2(n, x, P3(x)v) +
n−1

∑
k=0

eck‖C(k, x)P3(x)v‖ ≤ L2(0, x, P3(x)v), (2.19)

L3(0, x, P3(x)v) +
n−1

∑
k=0

ed(k−n)‖C(k, x)P3(x)v‖ ≤ L3(n, x, P3(x)v), (2.20)

for all (n, x, v) ∈N∗ ×Y.

Theorem 2.16. The pair (C,P) admits uniform exponential trisplitting if and only if there exist a
Lyapunov function L = (L1, L2, L3) : N× Y → R3

+ for (C,P) and a constant M ≥ 1 such that the
following relations are satisfied

L1(0, x, P1(x)v) ≤ M‖P1(x)v‖, (2.21)

L1(n, x, P2(x)v) ≤ M‖C(n, x)P2(x)v‖, (2.22)

L2(0, x, P3(x)v) ≤ M‖P3(x)v‖, (2.23)

L3(n, x, P3(x)v) ≤ M‖C(n, x)P3(x)v‖, (2.24)

for all (n, x, v) ∈N×Y.
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Proof. Necessity. We consider L = (L1, L2, L3) : N×Y → R+ given by

L1(n, x, v) =
+∞

∑
k=n

e−µk‖C(k, x)P1(x)v‖+
n

∑
k=0

eν(n−k)‖C(k, x)P2(x)v‖,

L2(n, x, v) =
+∞

∑
k=n

eωk‖C(k, x)P3(x)v‖,

L3(n, x, v) =
n

∑
k=0

eη(k−n)‖C(k, x)P3(x)v‖,

for all (n, x, v) ∈N×Y, where µ, ν, ω, η are given by Theorem 2.13. Further, for all (n, x, v) ∈
N∗ ×Y we obtain

L1(n, x, P1(x)v) +
n−1

∑
k=0

e−µk‖C(k, x)P1(x)v‖

=
+∞

∑
k=n

e−µk‖C(k, x)P1(x)v‖+
n−1

∑
k=0

e−µk‖C(k, x)P1(x)v‖

=
+∞

∑
k=0

e−µk‖C(k, x)P1(x)v‖

= L1(0, x, P1(x)v),

L1(0, x, P2(x)v) +
n−1

∑
k=0

eν(n−k)‖C(k, x)P2(x)v‖

=
n−1

∑
k=0

eν(n−k)‖C(k, x)P2(x)v‖

≤
n

∑
k=0

eν(n−k)‖C(k, x)P2(x)v‖

= L1(n, x, P2(x)v),

L2(n, x, P3(x)v) +
n−1

∑
k=0

eωk‖C(k, x)P3(x)v‖

=
+∞

∑
k=n

eωk‖C(k, x)P3(x)v‖+
n−1

∑
k=0

eωk‖C(k, x)P3(x)v‖

=
+∞

∑
k=0

eωk‖C(k, x)P3(x)v‖

= L2(0, x, P3(x)v),

L3(0, x, P3(x)v) +
n−1

∑
k=0

eη(k−n)‖C(k, x)P3(x)v‖

=
n−1

∑
k=0

eη(k−n)‖C(k, x)P3(x)v‖

≤
n

∑
k=0

eη(k−n)‖C(k, x)P3(x)v‖

= L3(n, x, P3(x)v).
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Thus, we have that L is a Lyapunov function for the pair (C,P). Finally, using Theorem 2.13
we deduce that the conditions (2.21)–(2.24) hold.

Sufficiency. Using condition (2.17) from Definition 2.15 and (2.21), one sees that

n−1

∑
k=0

e−ak‖C(k, x)P1(x)v‖ ≤ L1(0, x, P1(x)v) ≤ M‖P1(x)v‖

which gives
+∞

∑
k=0

e−ak‖C(k, x)P1(x)v‖ ≤ (M + 1)‖P1(x)v‖,

for all (x, v) ∈ Y. In a similar manner, (2.18) from Definition 2.15 and (2.22) provides

n

∑
k=0

eb(n−k)‖C(k, x)P2(x)v‖ =
n−1

∑
k=0

eb(n−k)‖C(k, x)P2(x)v‖+ ‖C(n, x)P2(x)v‖

≤ L1(n, x, P2(x)v) + ‖C(n, x)P2(x)v‖
≤ (M + 1)‖C(n, x)P2(x)v‖.

Hence
n

∑
k=0

eb(n−k)‖C(k, x)P2(x)v‖ ≤ (M + 1)‖C(n, x)P2(x)v‖,

for all (n, x, v) ∈N×Y. Also, the relations (2.19) from Definition 2.15 and (2.23) implies

n−1

∑
k=0

eck‖C(k, x)P3(x)v‖ ≤ L2(0, x, P3(x)v) ≤ M‖P3(x)v‖

and then
+∞

∑
k=0

eck‖C(k, x)P3(x)v‖ ≤ (M + 1)‖P3(x)v‖,

for all (x, v) ∈ Y. Similarly, from (2.20) from Definition 2.15 and (2.24) it follows that

n

∑
k=0

ed(k−n)‖C(k, x)P3(x)v‖ =
n−1

∑
k=0

ed(k−n)‖C(k, x)P3(x)v‖+ ‖C(n, x)P3(x)v‖

≤ L3(n, x, P3(x)v) + ‖C(n, x)P3(x)v‖
≤ (M + 1)‖C(n, x)P3(x)v‖

which yields
n

∑
k=0

ed(k−n)‖C(k, x)P3(x)v‖ ≤ (M + 1)‖C(n, x)P3(x)v‖,

for all (n, x, v) ∈ N× Y. Applying Theorem 2.13, we conclude that the pair (C,P) admits
uniform exponential trisplitting, completing the proof.

In particular, we obtain
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Corollary 2.17. The pair (C,P) admits uniform exponential trichotomy if and only if there exist a
Lyapunov function L = (L1, L2, L3) : N×Y → R3

+ for (C,P) and a constant M ≥ 1 such that

L1(0, x, P1(x)v) ≤ M‖P1(x)v‖,
L1(n, x, P2(x)v) ≤ M‖C(n, x)P2(x)v‖,
L2(0, x, P3(x)v) ≤ M‖P3(x)v‖,
L3(n, x, P3(x)v) ≤ M‖C(n, x)P3(x)v‖,

for all (n, x, v) ∈N×Y.

3 Uniform exponential trisplitting with strongly invariant projec-
tors

Let P = {P1, P2, P3} be an orthogonal and invariant family of projectors for the discrete cocycle
C : N× X → B(V) over the discrete semiflow S : N× X → X on Y.

Definition 3.1. We say that P = {P1, P2, P3} is strongly invariant for the discrete cocycle C if
the map C(n, x) is an isomorphism from Range Pj(x) to Range Pj(S(n, x)), j = 2, 3, for all
(n, x) ∈N× X.

Previous definition provides a so-called “regularity condition”. For a more detailed discus-
sion about some properties regarding this see ([21]). Through the following example we will
show for a pair (C,P) that admits a uniform exponential trisplitting with invariant projections
but fails to be strongly invariant.

Example 3.2. Let X = R+ and S : N× X → B(V) defined by S(n, x) = n + x. It is obvious
that the semiflow properties are satisfied, i.e. S(0, x) = x and S(m, S(n, x)) = S(m + n, x).

Let V = R4 with the norm ‖v‖ = ‖(v1, v2, v3, v4)‖ = |v1|+ |v2|+ |v3|+ |v4|. For all (n, x) ∈
N× X we consider C(n, x) : V → V given by

C(n, x)v =


(v1e−n, v2en, v3en, v4e2n), n ≥ 0, x > 0

(v1e−n, 0, v3en, v4e2n), n > 0, x = 0

(v1, v2, v3, v4), n = 0, x = 0

Let m, n ∈N, x ∈ X and v ∈ V. Clearly, C(0, x)v = v. Further, we verify the cocycle properties.
If n = 0 the relation

C(m, S(n, x))C(n, x)v = C(m + n, x)v⇐⇒ C(m, n + x)C(n, x)v = C(m + n, x)v

is automatically satisfied. Further, we suppose that n > 0. If x = 0 then we have

C(m, n)C(n, 0)v = C(m + n, 0)v,

⇐⇒ C(m, n)(v1e−n, 0, v3en, v4e2n) = (v1e−(m+n), 0, v3em+n, v4e2(m+n)),

⇐⇒ (v1e−ne−m, 0, v3enem, v4e2ne2m) = (v1e−(m+n), 0, v3em+n, v4e2(m+n)).

If x > 0 then we have

C(m, n + x)C(n, x)v = C(m + n, x)v

⇐⇒ C(m, n + x)(v1e−n, v2en, v3en, v4e2n) = (v1e−(m+n), v2em+n, v3em+n, v4e2(n+m))

⇐⇒ (v1e−ne−m, v2enem, v3enem, v4e2ne2m) = (v1e−(m+n), v2en+m, v3en+m, v4e2(n+m))



Uniform exponential trisplitting 11

Hence C : N× X → B(V) is a discrete cocycle over the semiflow S.
Now, for all x ∈ X we consider the family of projections P = {Pj(x)}, Pj(x) : V → V,

j ∈ {1, 2, 3} defined by

P1(x)v =

{
(0, v2, v3, 0), x = 0

(−v2e−2x, v2, v3, 0), x > 0

P2(x)v =
{
(0, 0, 0, v4), x ≥ 0

P3(x)v =

{
(v1, 0, 0, 0), x = 0

(v1 + v2e−2x, 0, 0, 0), x > 0.

One can easily see that (P1(x) + P2(x) + P3(x))v = v and

Pk(x)Pj(x)v =

{
Pk(x)v, k = j

0, k 6= j,

for all x ∈ X, v ∈ V and k, j ∈ {1, 2, 3}. Further, we will show that the pair (C,P) considered
above admits an exponential trisplitting. Let n ∈N, x ∈ X, v ∈ V. First, we have that

P1(S(n, x))C(n, x)v = C(n, x)P1(x)v

⇐⇒ P1(n + x)C(n, x)v = C(n, x)P1(x)v.

For n = 0 the equality is obvious. For n > 0 and x = 0 we have that

P1(n)C(n, 0)v = C(n, 0)P1(0)v

⇐⇒ P1(n)(v1e−n, 0, v3en, v4e2n) = C(n, 0)(0, v2, v3, 0)

⇐⇒ (0, 0, v3en, 0) = (0, 0, v3en, 0).

For the case n > 0 and x > 0 we obtain

P1(n + x)C(n, x)v = C(n, x)P1(x)v

⇐⇒ P1(n + x)(v1e−n, v2en, v3en, v4e2n) = C(n, x)(−v2e−2x, v2, v3, 0)

⇐⇒ (−v2e−ne−2x, v2en, v3en, 0) = (−v2e−2xe−n, v2en, v3en, 0).

Hence
‖C(0, x)P1(x)v‖ = ‖P1(x)v‖.

Further, n > 0 and x = 0 leads us to

‖C(n, 0)P1(0)v‖ = en|v3| ≤ en(|v2|+ |v3|) = en‖P1(0)v‖.

Similarly, the case n > 0 and x > 0 provides us

‖C(n, x)P1(x)v‖ = |v2|e−2xe−n + |v2|en + |v3|en

≤ en(|v2|e−2x + |v2|+ |v3|)
= en‖P1(x)v‖.

We conclude that
‖C(n, x)P1(x)v‖ ≤ en‖P1(x)v‖. (3.1)
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Then, for the second projector it is clear that

P2(S(n, x))C(n, x)v = C(n, x)P2(x)v

⇐⇒ P2(n + x)C(n, x)v = C(n, x)P2(x)v.

The equality is also true for n = 0. For n > 0 and x = 0 we have that

P2(n)C(n, 0)v = C(n, 0)P2(0)v

⇐⇒ P2(n)(v1e−n, 0, v3en, v4e2n) = C(n, 0)(0, 0, 0, v4)

⇐⇒ (0, 0, 0, v4e2n) = (0, 0, 0, v4e2n).

For the case n > 0 and x > 0 we obtain

P2(n + x)C(n, x)v = C(n, x)P2(x)v

⇐⇒ P2(n + x)(v1e−n, v2en, v3en, v4e2n) = C(n, x)(0, 0, 0, v4)

⇐⇒ (0, 0, 0, v4e2n) = (0, 0, 0, v4e2n).

Hence
‖C(n, x)P2(x)v‖ = e2n‖P2(x)v‖. (3.2)

Finally, for the third projector we have

P3(S(n, x))C(n, x)v = C(n, x)P3(x)v

⇐⇒ P3(n + x)C(n, x)v = C(n, x)P3(x)v.

The equality is also true for n = 0. For n > 0 and x = 0 we have that

P3(n)C(n, 0)v = C(n, 0)P3(0)v

⇐⇒ P3(n)(v1e−n, 0, v3en, v4e2n) = C(n, 0)(v1, 0, 0, 0)

⇐⇒ (v1e−n, 0, 0, 0) = (v1e−n, 0, 0, 0).

For the case n > 0 and x > 0 we obtain

P3(n + x)C(n, x)v = C(n, x)P3(v)

⇐⇒ P3(n + x)(v1e−n, v2en, v3en, v4e2n) = C(n, x)(v1 + v2e−2x, 0, 0, 0)

⇐⇒ e−n(v1 + v2e−2x, 0, 0, 0) = e−n(v1 + v2e−2x, 0, 0, 0).

Hence
‖C(0, x)P3(x)v‖ = ‖P3(x)v‖.

Further, n > 0 and x > 0 leads us to

‖C(n, x)P3(x)v‖ = e−n‖P3(x)v‖.

Similarly, if n > 0 we have

‖C(n, 0)P3(0)v‖ = e−n|v1| = e−n‖P3(0)v‖.

It follows that
‖C(n, x)P3(x)v‖ ≤ ‖P3(x)v‖, (3.3)
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respectively
‖P3(x)v‖ = en‖C(n, x)P3(x)v‖. (3.4)

Using (3.1)–(3.4), we conclude that relations (2.1)-(2.4) fron Definition 2.6 holds with N = 1,
α = 1, β = 2, γ = 0 and δ = 1.

Finally, we will prove that C(1, 0) : P1(0)V → P1(S(1, 0))V = P1(1)V is not surjective.
Clearly

(−e−2, 1, 1, 0) = P1(1)(1, 1, 1, 1) ∈ P1(1)V.

Let v ∈ V. Then

C(1, 0)P1(0)v = C(1, 0)(0, v2, v3, 0) = (0, 0, v3e, 0)

6= (−e−2, 1, 1, 0) = P1(1)(1, 1, 1, 1).

Therefore C(1, 0) is not an isomorphism and we get the desired conclusion.

Further, we will provide an example where the isomorphism property is verified. In
fact this example provides a general class of pairs (C,P) which has uniform exponential
trisplitting with strongly invariant projections.

Example 3.3. Let X = R+ and S : N× X → X defined by S(n, x) = n + x. Let V = l∞(N, R)

endowed with the norm ‖v‖ = ‖(vj)j‖ = supj∈N |vj|. For all x ∈ X we consider the family of
projections P = {Pj(x)}, Pj(x) : V → V, j ∈ {1, 2, 3}, defined by

P1(x)v = (v0, 0, 0, v3, 0, 0, v6, 0, 0, . . .),

P2(x)v = (0, v1, 0, 0, v4, 0, 0, v7, 0, . . .),

P3(x)v = (0, 0, v2, 0, 0, v5, 0, 0, v8, . . .).

Let a1, a2, a3, a4 ∈ R such that a1 < a2 and a3 < a4. For all (n, x) ∈ N × X we consider
C(n, x) : V → V given by

C(n, x)v = ea1nP1(x)v + ea2nP2(x)v + e−a3nP3(x)v.

For all m, n ∈N, x ∈ X and v ∈ V we have that

S(0, x) = x, S(m, S(n, x)) = S(m + n, x),

respectively
C(0, x)v = v, C(m, S(n, x))C(n, x)v = C(m + n, x)v.

Further, for all j ∈ {1, 2, 3} we have that

Pj(S(n, x)) = Pj(n + x) = Pj(x)

respectively

Pj(S(n, x))C(n, x)v = C(n, x)Pj(x)v

⇐⇒ Pj(x)C(n, x)v = C(n, x)Pj(x)v =

{
eajnPj(x)v, j = 1, 2

e−ajnPj(x)v, j = 3.

It follows that relations (2.1)-(2.4) fron Definition 2.6 holds with N = 1, α = a1, β = a2, γ = a3

and δ = a4. Let j ∈ {1, 2, 3}. It remains to show that C(n, x) : Pj(x)V → Pj(S(n, x))V = Pj(x)V
is an isomorphism. This follows from the definition of the projections Pj(x) : V → V and the
fact that

C(n, x)Pj(x)v =

{
Pj(x)(eajnv), j = 1, 2

Pj(x)(e−ajnv), j = 3.
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Remark 3.4. If the family of projectors P = {P1, P2, P3} is strongly invariant for the discrete
cocycle C : N × X → B(V) over the discrete semiflow S : N × X → X, then there exists
Dj : N × X → B(V) such that for all (n, x) ∈ N × X, Dj(n, x) is an isomorphism from
Range Pj(S(n, x)) to Range Pj(x), j = 2, 3 and

C(n, x)Dj(n, x)Pj(S(n, x)) = Pj(S(n, x)), (3.5)

Dj(n, x)C(n, x)Pj(x) = Pj(x)⇐⇒ Dj(n, x)Pj(S(n, x))C(n, x)Pj(x) = Pj(x), (3.6)

Pj(x)Dj(n, x)Pj(S(n, x)) = Dj(n, x)Pj(S(n, x)), (3.7)

for all (n, x) ∈N× X.

Proposition 3.5. If P = {P1, P2, P3} is strongly invariant for the discrete cocycle C : N× X →
B(V), then Dj : N× X → B(V), j = 2, 3 satisfies

Dj(n + m, x)Pj(S(n + m, x)) = Dj(m, x)Dj(n, S(m, x))Pj(S(n + m, x)),

for all (n, m, x) ∈N2 × X.

Proof. We have that

Dj(n + m, x)Pj(S(n + m, x)) = Pj(x)Dj(n + m, x)Pj(S(n + m, x))

= Dj(m, x)C(m, x)Pj(x)Dj(n + m, x)Pj(S(n + m, x))

= Dj(m, x)Pj(S(m, x))C(m, x)Dj(n + m, x)Pj(S(n + m, x))

= Dj(m, x)Dj(n, S(m, x))C(n, S(m, x))Pj(S(m, x))C(m, x)Dj(n + m, x)

and

Pj(S(n + m, x))

= Dj(m, x)Dj(n, S(m, x))C(n, S(m, x))C(m, x)Pj(x)D(n + m, x)Pj(S(n + m, x))

= Dj(m, x)Dj(n, S(m, x))C(n + m, x)Pj(x)Dj(n + m, x)Pj(S(n + m, x))

= Dj(m, x)Dj(n, S(m, x))C(n + m, x)Dj(n + m, x)Pj(S(n + m, x))

= Dj(m, x)Dj(n, S(m, x))Pj(S(n + m, x)),

for all (n, m, x) ∈N2 × X.

Proposition 3.6. Let n, k ∈ N such that 0 ≤ k ≤ n. If P = {P1, P2, P3} is a strongly invariant
family of projectors for the discrete cocycle C : N× X → B(V), then Dj : N× X → B(V), j = 2, 3
verifies the following properties

Dj(n− k, S(k, x))Pj(S(n, x)) = C(k, x)Pj(x)Dj(n, x)Pj(S(n, x)),

C(k, x)Pj(x) = Dj(n− k, S(k, x))C(n, x)Pj(x),

for all x ∈ X.

Proof. It is easily seen that S(n− k, S(k, x)) = S(n, x). Further, replacing n → n− k and x →
S(k, x) in (3.7) from Remark 3.4 leads to

Pj(S(k, x)Dj(n− k, S(k, x))Pj(S(n− k, S(k, x)))

= Dj(n− k, S(k, x)Pj(S(n− k, S(k, x)))

= Dj(n− k, S(k, x))Pj(S(n, x)).
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Hence

Dj(n− k, S(k, x))Pj(S(n, x))

= Pj(S(k, x))Dj(n− k, S(k, x))Pj(S(n, x))

= C(k, x)Dj(k, x)Pj(S(k, x))Dj(n− k, S(k, x))Pj(S(n, x))

= C(k, x)Pj(x)Dj(k, x)Pj(S(k, x))Dj(n− k, S(k, x))Pj(S(n, x))

= C(k, x)Pj(x)Dj(k, x)Dj(n− k, S(k, x))Pj(S(n, x))

= C(k, x)Pj(x)Dj(n, x)Pj(S(n, x)).

Using similar arguments in (3.6) from Remark 3.4 for n → n − k and x → S(k, x) one can
check that

Dj(n− k, S(k, x))Pj(S(n− k, S(k, x)))C(n− k, S(k, x))Pj(S(k, x)) = Pj(S(k, x)),

and so
Dj(n− k, S(k, x))Pj(S(n, x))C(n− k, S(k, x))Pj(S(k, x)) = Pj(S(k, x)).

Finally, we have that

C(k, x)Pj(x) = Pj(S(k, x))C(k, x)Pj(x)

= Dj(n− k, S(k, x))Pj(S(n, x))C(n− k, S(k, x))Pj(S(n, x))

· C(n− k, S(k, x))C(k, x)Pj(x)

= Dj(n− k, S(k, x))Pj(S(n, x))C(n− k, S(k, x))C(k, x)Pj(x)

= Dj(n− k, S(k, x))Pj(S(n, x))C(n, x)Pj(x).

This completes the proof.

Proposition 3.7. Let P = {P1, P2, P3} be a strongly invariant family of projectors for the discrete
cocycle C : N× X → B(V). Then the pair (C,P) admits uniform exponential trisplitting if and only
if there exist N ≥ 1, α, β, γ, δ ∈ R with α < β, γ < δ such that

‖C(n, x)P1(x)v‖ ≤ Neαn‖P1(x)v‖, (3.8)

eβn‖D2(n, x)P2(S(n, x))v‖ ≤ N‖P2(S(n, x))v‖, (3.9)

eγn‖C(n, x)P3(x)v‖ ≤ N‖P3(x)v‖, (3.10)

‖D3(n, x)P3(S(n, x))v‖ ≤ Neδn‖P3(S(n, x))v‖, (3.11)

for all (n, x, v) ∈N×Y.

Proof. We only show the equivalence between (2.2)–(3.9) and (2.4)–(3.11). Assume that (2.2) is
satisfied, thus

eβn‖D2(n, x)P2(S(n, x))v‖ = eβn‖P2(x)D2(n, x)P2(S(n, x))v‖
≤ N‖C(n, x)P2(x)D2(n, x)P2(S(n, x))v‖
= N‖P2(S(n, x))C(n, x)D2(n, x)P2(S(n, x))v‖
= N‖P2(S(n, x))v‖,
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for all (n, x, v) ∈N×Y. Also, from (2.4) is obtained that

‖D3(n, x)P3(S(n, x))v‖ = ‖P3(x)D3(n, x)P3(S(n, x))v‖
≤ Neδn‖P3(S(n, x))C(n, x)D3(n, x)P3(S(n, x))v

= Neδn‖P3(S(n, x))v‖,

for all (n, x, v) ∈N×Y.
Conversely, if (3.9) is satisfied, then

eβn‖P2(x)v‖ = eβn‖D2(n, x)C(n, x)P2(x)v‖
= eβn‖D2(n, x)P2(S(n, x))C(n, x)P2(x)v‖
≤ N‖P2(S(n, x))C(n, x)P2(x)v‖
= N‖C(n, x)P2(x)v‖,

for all (n, x, v) ∈N×Y. Similarly, by (3.11) one has

‖P3(x)v‖ = ‖D3(n, x)C(n, x)P3(x)v‖
= ‖D3(n, x)P3(S(n, x))C(n, x)P3(x)v‖
≤ Neδn‖P3(S(n, x))C(n, x)P3(x)v‖
= Neδn‖C(n, x)P3(x)v‖,

for all (n, x, v) ∈N×Y.

Proposition 3.8. Let P = {P1, P2, P3} be a strongly invariant family of projectors for the discrete
cocycle C : N× X → B(V). Then the pair (C,P) admits uniform exponential trisplitting of Datko
type if and only if there exist some constants D ≥ 1 and µ, ν, ω, η ∈ R with µ < ν, ω < η such that

+∞

∑
k=n

eµ(n−k)‖C(k, x)P1(x)v‖ ≤ D‖C(n, x)P1(x)v‖, (3.12)

n

∑
k=0

eν(n−k)‖D2(n− k, S(k, x))P2(S(n, x))v‖ ≤ D‖P2(S(n, x))v‖, (3.13)

+∞

∑
k=n

eω(k−n)‖C(k, x)P3(x)v‖ ≤ D‖C(n, x)P3(x)v‖, (3.14)

n

∑
k=0

eη(k−n)‖D3(n− k, S(k, x))P3(S(n, x))v‖ ≤ D‖P3(S(n, x))v‖, (3.15)

for all (n, x, v) ∈N×Y.

Proof. Again, as in the proof of Proposition 3.7 it is enough to prove the equivalences (2.10)–
(3.13), and (2.12)–(3.15). The “if” part follows from Definition 2.11. Using (2.10) we have
that

n

∑
k=0

eν(n−k)‖D2(n− k, S(k, x))P2(S(n, x))v‖

=
n

∑
k=0

eν(n−k)‖C(k, x)P2(x)D2(k, x)P2(S(k, x))D2(n− k, S(k, x))P2(S(n, x))v‖

≤ D‖C(n, x)P2(x)D2(n, x)P2(S(n, x))v‖
= D‖P2(S(n, x))v‖,
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for all (n, x, v) ∈ N× Y, hence (3.13). Using a similar technique, we obtain that condition
(2.12) from Definition 2.11 implies (3.15).

Let us now show the “only if” part. From (3.13) it yields that

n

∑
k=0

eν(n−k)‖C(k, x)P2(x)v‖

=
n

∑
k=0

eν(n−k)‖D2(n− k, S(k, x))P2(S(n, x))C(n− k, S(k, x))P2(S(k, x))C(k, x)P2(x)v‖

≤ D‖P2(S(n, x))C(n, x)P2(x)v‖
= D‖C(n, x)P2(x)v‖,

for all (n, x, v) ∈ N× Y, so (2.10) is satisfied. Using a similar calculation we obtain (2.12) and
hence we have the assertion.

Theorem 3.9. We consider P = {P1, P2, P3} a strongly invariant family of projectors for the discrete
cocycle C : N×X → B(V). Then (C,P) admits uniform exponential trisplitting if and only if (C,P)
admits uniform exponential trisplitting of Datko type.

Proof. Necessity. Let µ, ν, ω, η ∈ R, such that α < µ < ν < β, ω < γ < δ < η, and

D = 1 + N
(

eµ

eµ − eα
+

eβ

eβ − eν
+

eγ

eγ − eω
+

eη

eη − eδ

)
.

Using (3.9) from Proposition 3.7 it follows that

n

∑
k=0

eν(n−k)‖D2(n− k, S(k, x))P2(S(n, x))v‖ ≤ N
n

∑
k=0

e(ν−β)(n−k)‖P2(S(n, x))v‖

≤ Neβ

eβ − eν
‖P2(S(n, x))v‖

≤ D‖P2(S(n, x))v‖,

for all (n, x, v) ∈N×Y, hence (3.13). Similarly, the relation (3.11) from Proposition 3.7 implies
(3.15), i.e.,

n

∑
k=0

eη(k−n)‖D3(n− k, S(k, x))P3(S(n, x))v‖ ≤ N
n

∑
k=0

e(δ−η)(n−k)‖P3(S(n, x))v‖

≤ Neη

eη − eδ
‖P3(S(n, x))v‖

≤ D‖P3(S(n, x))v‖,

for all (n, x, v) ∈N×Y.
Sufficiency. We shall prove that the conditions in Proposition 3.7 hold. Relations (3.8) and

(3.10) holds as in Theorem 2.13. Further, making use of (3.13) and (3.15) we deduce

eνn‖D2(n, x)P2(S(n, x))v‖ ≤
n

∑
k=0

eν(n−k)‖D2(n− k, S(k, x))P2(S(n, x))v‖

≤ D‖P2(S(n, x))v‖,
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respectively

e−ηn‖D3(n, x)P3(S(n, x))v‖ ≤
n

∑
k=0

eη(k−n)‖D3(n− k, S(k, x))P3(S(n, x))v‖

≤ D‖P3(S(n, x))v‖,

for all (n, x, v) ∈ N× Y. Thus, we obtain that the pair (C,P) admits uniform exponential
trisplitting.

Corollary 3.10. We consider P = {P1, P2, P3} a strongly invariant family of projectors for the discrete
cocycle C : N×X → B(V). The pair (C,P) has uniform exponential trichotomy if and only if (C,P)
has uniform exponential trichotomy of Datko type.

Proof. The proofs here are straightforward from Theorem 3.9.

Proposition 3.11. Let P = {P1, P2, P3} be a strongly invariant family of projectors for the discrete
cocycle C : N× X → B(V). Then L = (L1, L2, L3) : N× Y → R3

+ is a Lyapunov function for the
pair (C,P) if and only if there exist some constants a, b, c, d ∈ R, with a < b and c < d such that

L1(n, x, P1(x)v) +
n−1

∑
k=0

e−ak‖C(k, x)P1(x)v‖ ≤ L1(0, x, P1(x)v), (3.16)

L1(0, x, D2(n, x)P2(S(n, x))v) +
n−1

∑
k=0

eb(n−k)‖D2(n− k, S(k, x))P2(S(n, x))v‖

≤ L1(n, x, D2(n, x)P2(S(n, x))v),
(3.17)

L2(n, x, P3(x)v) +
n−1

∑
k=0

eck‖C(k, x)P3(x)v‖ ≤ L2(0, x, P3(x)v), (3.18)

L3(0, x, D3(n, x)P3(S(n, x))v) +
n−1

∑
k=0

ed(k−n)‖D3(n− k, S(k, x))P3(S(n, x))v‖

≤ L3(n, x, D3(n, x)P3(S(n, x))v),
(3.19)

for all (n, x, v) ∈N∗ ×Y.

Proof. It is easily seen that (2.17)–(3.16) and (2.19)–(3.18), respectively, are equivalent. Further,
we prove the equivalence between (2.18) and (3.21). Assume that (2.18) is satisfied, then there
exists a unique w ∈ V such that

D2(n, x)P2(S(n, x))v = P2(x)w,

or, in equivalent form
C(n, x)P2(x)w = P2(S(n, x))v.

It follows that
n−1

∑
k=0

eb(n−k)‖D2(n− k, S(k, x))P2(S(n, x))v‖

=
n−1

∑
k=0

eb(n−k)‖C(k, x)P2(x)D2(n, x)P2(S(n, x))v‖

=
n−1

∑
k=0

eb(n−k)‖C(k, x)P2(x)w‖ ≤ L1(n, x, P2(w))− L1(0, x, P2(x)w)

= L1(n, x, D2(n, x)P2(S(n, x))v)− L1(0, x, D2(n, x)P2(S(n, x))v).
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Conversely, there exists a unique t ∈ V such that

C(n, x)P2(x)v = P2(S(n, x))t,

or, in equivalent form
D2(n, x)P2(S(n, x))t = P2(x)v.

Hence,

n−1

∑
k=0

eb(n−k)‖C(k, x)P2(x)v‖

=
n−1

∑
k=0

eb(n−k)‖D2(n− k, S(k, x))P2(S(n, x))C(n, x)P2(x)v‖

=
n−1

∑
k=0

eb(n−k)‖D2(n− k, S(k, x))P2(S(n, x))t‖

≤ L1(n, x, D2(n, x)P2(S(n, x))t)− L1(0, x, D2(n, x)P2(S(n, x))t)

= L1(n, x, P2(x)v)− L1(0, x, P2(x)v).

In a similar manner it can be proved the equivalence between (2.20) and (3.19), which ends
the proof.

Theorem 3.12. Let P = {P1, P2, P3} be a strongly invariant family of projectors for the discrete
cocycle C : N× X → B(V). The pair (C,P) has uniform exponential trisplitting if and only if there
exists a Lyapunov function L = (L1, L2, L3) : N× Y → R3

+ for (C,P) and a constant M ≥ 1 such
that the following relations are satisfied

L1(0, x, P1(x)v) ≤ M‖P1(x)v‖, (3.20)

L1(n, x, D2(n, x)P2(S(n, x))v) ≤ M‖P2(S(n, x))v‖, (3.21)

L2(0, x, P3(x)v) ≤ M‖P3(x)v‖, (3.22)

L3(n, x, D3(n, x)P3(S(n, x))v) ≤ M‖P3(S(n, x))v‖, (3.23)

for all (n, x, v) ∈N×Y.

Proof. It is enough to show the equivalence between (2.22) and (3.21). Assume that (2.22) is
satisfied. Then, there exists a unique w ∈ V such that

D2(n, x)P2(S(n, x))v = P2(x)w,

or, in equivalent form
C(n, x)P2(n, x)w = P2(S(n, x))v.

Hence, we have

L1(n, x, D2(n, x)P2(S(n, x))v) = L1(n, x, P2(x)w)

≤ M‖C(n, x)P2(x)w‖ = M‖P2(S(n, x))v‖.

Conversely suppose (3.21) holds. There exists a unique t ∈ V such that,

C(n, x)P2(x)v = P2(S(n, x))t
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which is equal to
D2(n, x)P2(S(n, x))t = P2(x)v.

In this way we may conclude that

L1(n, x, P2(x)v) = L1(n, x, D2(n, x)P2(S(n, x))t)

≤ M‖P2(S(n, x)t‖ = M‖C(n, x)P2(x)v‖.

4 Conclusion

The notion of uniform exponential trichotomy, which has been proved so useful in characteriz-
ing dynamical systems, has been extended here to the so called concept of uniform exponential
trisplitting. This new concept provides a better view regarding the growth rate constants from
the classical definition of uniform exponential trichotomy. Furthermore, we have derived new
Datko-type and Lyapunov-type results for both characterisations of the dynamical system in
terms of invariant and strongly invariant projections.
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