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1 Introduction

One of the routes to chaos is the period-doubling cascade, which was first observed by Myr-
berg in quadratic maps [27–29]. This phenomenon is based on the successive emergence of
periodic motions with twice period of the previous oscillation as some parameter is varied in
a system [14, 26, 36]. The period-doubling onset of chaos exhibits a universal behavior [14].
Period-doubling route to chaos can be observed in various fields such as mechanics, electri-
cal circuits, lasers, magnetism, photochemistry, neural processes, and predator-prey systems
[7, 20, 23, 30–32, 39, 40].

It is known that if a function I(t) with a certain property such as boundedness, periodicity,
or almost periodicity is considered as an input for an evolution equation u′ = L[u] + I(t),
where L[u] is a linear operator with spectra placed in the left half of the complex plane,
then the equation produces a solution, an output, with a similar property of boundedness,
periodicity, or almost periodicity [11, 15]. Some applications of the input-output systems can
be found in the studies [7, 8, 13, 38].

In this paper, we take into account the problem whether chaotic inputs generate chaotic
outputs in systems of impulsive differential equations. Such differential equations describe the
dynamics of real world processes in which abrupt changes occur, and they play an increasingly
important role in mechanics, electronics, biology, neural networks, communication systems,
chaos theory, and population dynamics [4, 21, 24, 34, 43–45]. In the present paper, we consider
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unidirectionally coupled systems such that the drive system is chaotic and the response system
admits impulsive actions. We understand chaos in terms of sensitivity and the existence of
infinitely many unstable periodic solutions in a bounded region. The sensitivity feature can
be considered as the main ingredient of chaos [12,25,33,42]. It is theoretically proved that the
impulsive response system replicates the sensitivity and the period-doubling cascade of the
drive.

The usage of perturbations to generate chaos in systems of differential equations was
initiated by Akhmet [1, 2], and replication of various types of chaos in generator–replicator
systems was considered in the paper [5]. The existence of Li-Yorke chaos in impulsive systems
was investigated in [3] by taking advantage of the chaotic behavior of the impulsive moments.
On the other hand, perturbations were utilized in [6] to demonstrate the presence of Li–Yorke
chaos in systems with impulses such that the proximality and frequent separation features
were rigorously proved. Differently from the papers [3, 6], in this study, we investigate the
replication of sensitivity and period-doubling cascade in the dynamics of impulsive systems.
Furthermore, the approach used in the present paper is different from synchronization of
chaotic systems [16] since we do not consider the coupled systems from the asymptotic point
of view.

The rest of the paper is organized as follows. In Section 2, we introduce the coupled
systems of differential equations that will be investigated and provide sufficient conditions for
the replication of period-doubling route to chaos. In Section 3, the replication of sensitivity by
the impulsive response system is theoretically proved. Section 4 is devoted to the replication of
period-doubling cascade, and finally, illustrative examples that support the theoretical results
are given in Section 5.

2 The model

Let us consider the system

x′ = F(t, x), (2.1)

where the function F : R×Rm → Rm is continuous in all of its arguments and there exists
a positive number T such that F(t + T, x) = F(t, x) for all t ∈ R and x ∈ Rm. Our main
assumption on system (2.1) is the existence of a nonempty set A of all solutions of (2.1) that
are uniformly bounded on R. In this case, there exists a compact set Λ ⊂ Rm such that the
trajectories of all solutions that belong to A lie inside Λ.

Next, we take into account the impulsive system

y′ = Ay + f (t, y) + g(x(t)), t 6= θk,

∆y|t=θk = By + W(y),
(2.2)

where x(t) is a solution of (2.1), the functions f : R×Rn → Rn, g : Rm → Rn and W : Rn →
Rn are continuous in all their arguments, the function f (t, y) satisfies the periodicity condition
f (t + T, y) = f (t, y) for all t ∈ R, y ∈ Rn, A and B are constant, n × n real matrices, the
sequence {θk} , k ∈ Z, of impulsive moments is strictly increasing, ∆y|t=θk = y(θk+)− y(θk),
and y(θk+) = limt→θ+k

y(t). We suppose that there exists a natural number p such that θk+p =

θk + T for all k ∈ Z.
We will rigorously prove that if system (2.1) is chaotic, then the impulsive system (2.2)

replicates the chaotic structure of (2.1). Our results are based on sensitivity and the existence



Replication of period-doubling route to chaos in impulsive systems 3

of infinitely many unstable periodic solutions in a bounded region. For the latter case we
will take into account a period-doubling cascade of system (2.1). The descriptions of period-
doubling cascade for system (2.1) and its replication by (2.2) are provided in Section 4.

The nonlinear terms f (t, y) and W(y) used in system (2.2) make the results of the present
study more amenable to real world phenomena with impulsive actions since nonlinearity is
essential in most cases [4,7,35]. On the other hand, the periodicity conditions on systems (2.1)
and (2.2) are required for the existence of periodic solutions.

Throughout the paper, we make use of the usual Euclidean norm for vectors and the
spectral norm for square matrices [19]. Moreover, we denote by log(I + B) the principal
logarithm of the matrix I + B assuming that I + B has no eigenvalues on the closed negative
real axis [18].

The following conditions are required.

(A1) The matrices A and B commute, and det(I + B) 6= 0, where I is the n× n identity matrix;

(A2) The eigenvalues of the matrix A + p
T log(I + B) have negative real parts;

(A3) There exist positive numbers M f and MW such that supt∈R,y∈Rn ‖ f (t, y)‖ ≤ M f and
supy∈Rn ‖W(y)‖ ≤ MW .

(A4) There exist positive numbers LF, L f , L1, L2, and LW such that

(i) ‖F(t, x1)− F(t, x2)‖ ≤ LF ‖x1 − x2‖ for all t ∈ R, x1, x2 ∈ Λ,

(ii) ‖ f (t, y1)− f (t, y2)‖ ≤ L f ‖y1 − y2‖ for all t ∈ R, y1, y2 ∈ Rn,

(iii) L1 ‖x1 − x2‖ ≤ ‖g(x1)− g(x2)‖ ≤ L2 ‖x1 − x2‖ for all x1, x2 ∈ Λ,

(iv) ‖W(y1)−W(y2)‖ ≤ LW ‖y1 − y2‖ for all y1, y2 ∈ Rn.

In what follows, we will denote by i(Γ) the number of the terms of the sequence {θk},
k ∈ Z, which belong to an interval Γ. One can confirm that i((a, b)) ≤ p + p

T (b− a), where a
and b are numbers such that b > a.

Let us denote by U(t, s) the transition matrix of the linear homogeneous impulsive system

u′ = Au, t 6= θk,

∆u|t=θk = Bu.

Under the condition (A1) we have U(t, s) = eA(t−s)(I + B)i([s,t)) for t > s and U(s, s) = I.
Moreover, if condition (A2) additionally holds, then there exist positive numbers N and ω

such that

‖U(t, s)‖ ≤ Ne−ω(t−s) (2.3)

for t ≥ s [4, 35]. The inequality (2.3) can be verified, for example, using the equation (4.114)
[35, p. 192] and the proof technique of Theorem 34 [35, p. 115]. Further details about transition
matrices can be found in the book [4].

The following conditions are also needed.

(A5) N
(

L f
ω + pLW

1−e−ωT

)
< 1;

(A6) −ω + NL f +
p
T ln(1 + NLW) < 0;

(A7) LW
∥∥ (I + B)−1 ∥∥ < 1.
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For a fixed solution x(t) of (2.1), a left-continuous function y(t) : R → Rn is a solution
of (2.2) if: (i) It has discontinuities only at the points θk, k ∈ Z, and these discontinuities are
jump discontinuities; (ii) The derivative y′(t) exists at each point t ∈ R \ {θk}, and the left-
sided derivative exists at the points θk, k ∈ Z; (iii) The differential equation is satisfied by y(t)
on R \ {θk} , and it holds for the left derivative of y(t) at every point θk, k ∈ Z; (iv) The jump
equation is satisfied by y(t) for every k ∈ Z.

According to the results of [4, 35], under the conditions (A1), (A2), (A3), (ii), (iv), (A4),
(ii), (iv), and (A5), for each x(t) ∈ A there exists a unique solution φx(t)(t) of system (2.2)
that is bounded on the whole real axis, and it satisfies the relation

φx(t)(t) =
∫ t

−∞
U(t, s)

[
f (s, φx(t)(s)) + g(x(s))

]
ds + ∑

−∞<θk<t
U(t, θk+)W(φx(t)(θk)). (2.4)

Let us denote
Mg = sup

x∈Λ
‖g(x)‖ .

Making use of the equation (2.4) and the inequality

∑
−∞<θk<t

e−ω(t−θk) ≤ p
1− e−ωT ,

it can be verified that the inequality supt∈R

∥∥φx(t)(t)
∥∥ ≤ K0 is valid for each x(t) ∈ A , where

K0 =
N(M f + Mg)

ω
+

pNMW

1− e−ωT .

Moreover, if condition (A6) additionally holds, then for a fixed solution x(t) ∈ A of (2.1)
the bounded solution φx(t)(t) attracts all other solutions of (2.2), i.e.,

∥∥y(t)− φx(t)(t)
∥∥ → 0 as

t → ∞ for each solution y(t) of (2.2). In other words, for each fixed x(t) ∈ A , the impulsive
system (2.2) is dissipative [17].

For the theoretical investigation of replication of sensitivity, let us denote by B the set of
all bounded solutions φx(t)(t) of the impulsive system (2.2), where x(t) ∈ A .

It is worth noting that the results of the present paper are valid even if we replace the
non-autonomous system (2.1) by an autonomous one of the form

x′ = F(x)

with the counterpart of condition (A4), (i), where F : Rm → Rm is a continuous function.

3 Sensitivity analysis

System (2.1) is called sensitive if there exist positive numbers ε0 and ∆ such that for an arbi-
trary positive number δ0 and for each x(t) ∈ A , there exist x(t) ∈ A , t0 ∈ R, and an interval
J ⊂ [t0, ∞), with a length no less than ∆, such that ‖x(t0)− x(t0)‖ < δ0 and ‖x(t)− x(t)‖ > ε0

for all t ∈ J [5].
We say that system (2.2) replicates the sensitivity of (2.1) if there exist positive numbers ε1

and ∆ such that for an arbitrary positive number δ1 and for each bounded solution φx(t)(t) ∈
B, there exist a bounded solution φx(t)(t) ∈ B, t0 ∈ R, and an interval J̃ ⊂ [t0, ∞), with a
length no less than ∆, which contains at most one element of the sequence {θk} such that∥∥φx(t)(t0)− φx(t)(t0)

∥∥ < δ1 and
∥∥φx(t)(t)− φx(t)(t)

∥∥ > ε1 for all t ∈ J̃.
For the proof of replication of sensitivity, the following analogue of the Gronwall’s in-

equality for piecewise continuous functions is required.
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Lemma 3.1 ([10]). Suppose that for γ1 ≤ t ≤ γ2 the following inequality holds:

u(t) ≤ a(t) +
∫ t

γ
b(s)u(s)ds + ∑

γ<tk<t
βku(tk),

where βk, k ∈ N, are constants and u(t) : R → R, a(t) : R → R, b(t) : R → [0, ∞) are piecewise
continuous functions that have jump discontinuities at the points tk, k = 1, 2, . . . , only and are left
continuous at each tk. Then, for γ1 ≤ t ≤ γ2,

u(t) ≤ a(t) +
∫ t

γ1

a(s)b(s) ∏
s<tk<t

(1 + βk)e
∫ t

s b(τ)dτds + ∑
γ1<tk<t

a(tk)βk ∏
tk<tj<t

(1 + β j)e
∫ t

tk
b(τ)dτ.

Note that in the notation ∑γ<tk<t βku(tk) in Lemma 3.1, the numbers βku(tk) are being
summed over all natural numbers k such that the inequality γ < tk < t is valid, and the
remaining summation and product notations used in the lemma have similar meanings.

The next theorem is concerned with the replication of sensitivity of system (2.1).

Theorem 3.2. Suppose that the conditions (A1)–(A7) hold. If system (2.1) is sensitive, then the
impulsive system (2.2) replicates the sensitivity of (2.1).

Proof. Fix an arbitrary number δ1 > 0 and a bounded solution φx(t)(t) ∈ B of system (2.2).
Let α = ω − NL f − p

T ln(1 + NLW). Note that the number α is positive by condition (A6).
Suppose that ε is a sufficiently small positive number satisfying the inequality[

1 +
NL2

ω

(
1 +

NL f

α
(1 + NLW)p +

pNLW

1− e−αT (1 + NLW)p
)]

ε ≤ δ1.

Take a number R < 0 sufficiently large in absolute value such that(
2N(M f + Mg)

ω
+

2pNMW

1− e−ωT

)
(1 + NLW)peαR ≤ ε,

and let δ0 = εeLF R.
Since (2.1) is sensitive, there exist positive numbers ε0 and ∆ such that ‖x(t0)− x(t0)‖ <

δ0 and ‖x(t)− x(t)‖ > ε0, t ∈ J, for some x(t) ∈ A , t0 ∈ R and for some interval J =

(ρ0, ρ0 + ∆0), where ρ0 and ∆0 are numbers with ρ0 ≥ t0 and ∆0 ≥ ∆. In the first part of the
proof, we will show that

∥∥φx(t)(t0)− φx(t)(t0)
∥∥ < δ1.

The solutions x(t) and x(t) of system (2.1) satisfy the equation

x(t)− x(t) = x(t0)− x(t0) +
∫ t

t0

[F (s, x(s))− F (s, x(s))]ds.

Therefore, we have for t ∈ [t0 + R, t0] that

‖x(t)− x(t)‖ ≤ ‖x(t0)− x(t0)‖+
∣∣∣∣ ∫ t

t0

LF ‖x(s)− x(s)‖ ds
∣∣∣∣.

By means of the Gronwall–Bellman inequality, one can confirm that

‖x(t)− x(t)‖ ≤ ‖x(t0)− x(t0)‖ eLF |t−t0|.

Hence, ‖x(t)− x(t)‖ < ε for t ∈ [t0 + R, t0].
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Since the relation

φx(t)(t)− φx(t)(t) =
∫ t0+R

−∞
U(t, s)

[
f
(

s, φx(t)(s)
)
+ g(x(s))− f

(
s, φx(t)(s)

)
− g(x(s))

]
ds

+
∫ t

t0+R
U(t, s)

[
f
(

s, φx(t)(s)
)
− f

(
s, φx(t)(s)

)]
ds

+
∫ t

t0+R
U(t, s) [g(x(s))− g(x(s))] ds

+ ∑
−∞<θk≤t0+R

U(t, θk+)
[
W
(

φx(t)(θk)
)
−W

(
φx(t)(θk)

)]
+ ∑

t0+R<θk<t
U(t, θk+)

[
W
(

φx(t)(θk)
)
−W

(
φx(t)(θk)

)]
holds, we have that∥∥∥φx(t)(t)− φx(t)(t)

∥∥∥ ≤ (
2N(M f + Mg)

ω
+

2pNMW

1− e−ωT

)
e−ω(t−t0−R)

+
NL2ε

ω

(
1− e−ω(t−t0−R)

)
+
∫ t

t0+R
NL f e−ω(t−s)

∥∥∥φx(t)(s)− φx(t)(s)
∥∥∥ ds

+ ∑
t0+R<θk<t

NLWe−ω(t−θk)
∥∥∥φx(t)(θk)− φx(t)(θk)

∥∥∥ . (3.1)

Let us define the functions ν(t) = eωt
∥∥φx(t)(t)− φx(t)(t)

∥∥ and h(t) = c + NL2ε
ω eωt, where

c =
(

2N(M f + Mg)− NL2ε

ω
+

2pNMW

1− e−ωT

)
eω(t0+R).

The inequality (3.1) implies that

ν(t) ≤ h(t) +
∫ t

t0+R
NL f ν(s)ds + ∑

t0+R<θk<t
NLWν(θk), t ∈ [t0 + R, t0].

By applying Lemma 3.1 one can verify that

ν(t) ≤ h(t) +
∫ t

t0+R
NL f (1 + NLW)i((s,t))eNL f (t−s)h(s)ds

+ ∑
t0+R<θk<t

NLW(1 + NLW)i((θk ,t))eNL f (t−θk)h(θk).

Using the equation

1 +
∫ t

t0+R
NL f (1 + NLW)i((s,t))eNL f (t−s)ds + ∑

t0+R<θk<t
NLW(1 + NLW)i((θk ,t))eNL f (t−θk)

= (1 + NLW)i((t0+R,t))eNL f (t−t0−R)

together with the inequality

(1 + NLW)i((a,b))eNL f (b−a) ≤ (1 + NLW)pe(ω−α)(b−a), b ≥ a,
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we obtain that

ν(t) ≤ c(1 + NLW)pe(ω−α)(t−t0−R) +
NL2ε

ω
eωt

+
∫ t

t0+R

N2L f L2ε

ω
(1 + NLW)pe(ω−α)(t−s)eωsds

+ ∑
t0+R<θk<t

N2L2LWε

ω
(1 + NLW)pe(ω−α)(t−θk)eωθk .

The last inequality implies for t ∈ [t0 + R, t0] that∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ ≤ (

2N(M f + Mg)− NL2ε

ω
+

2pNMW

1− e−ωT

)
(1 + NLW)pe−α(t−t0−R)

+
NL2ε

ω
+

N2L f L2ε

αω
(1 + NLW)p

(
1− e−α(t−t0−R)

)
+

pN2L2LWε

(1− e−αT)ω
(1 + NLW)p

(
1− e−α(t−t0−R+T)

)
.

Hence,∥∥∥φx(t)(t0)− φx(t)(t0)
∥∥∥ <

(
2N(M f + Mg)

ω
+

2pNMW

1− e−ωT

)
(1 + NLW)peαR

+
NL2ε

ω

(
1 +

NL f

α
(1 + NLW)p +

pNLW

1− e−αT (1 + NLW)p
)

≤
[

1 +
NL2

ω

(
1 +

NL f

α
(1 + NLW)p +

pNLW

1− e−αT (1 + NLW)p
)]

ε

≤ δ1.

Next, we will show the existence of positive numbers ε1 and ∆ such that∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ > ε1

for all t ∈ J̃, where J̃ ⊂ [t0, ∞) is an interval which has length ∆ and contains at most one
element of the sequence {θk} , k ∈ Z, of impulsive moments.

Let us denote MF = supt∈R,x∈Λ ‖F(t, x)‖. Since for each x(t) ∈ A the inequality
supt∈R ‖x′(t)‖ ≤ MF holds, one can conclude that the set A is an equicontinuous family
on R. Suppose that g(x) = (g1(x), g2(x), . . . , gn(x)) , where each gj, 1 ≤ j ≤ n, is a real valued
function. Because the function g : Λ× Λ → Rn defined as g(x1, x2) = g(x1)− g(x2) is uni-
formly continuous on Λ×Λ, the set consisting of the elements of the form gi(x(t))− gi(x(t)),
i = 1, 2, . . . , n, where x(t), x(t) ∈ A , is an equicontinuous family on R. Therefore, there exists
a positive number τ < ∆, which does not depend on the functions x(t) and x(t), such that for
each t1, t2 ∈ R with |t1 − t2| < τ, the inequality

|(gi (x(t1))− gi (x(t1)))− (gi (x(t2))− gi (x(t2)))| <
L1ε0

2
√

n
(3.2)

is valid for all i = 1, 2, . . . , n.
Now, let η be the midpoint of the interval J, i.e., η = ρ0 + ∆0/2, and set ζ = η− τ/2. There

exists an integer j, 1 ≤ j ≤ n, such that∣∣gj(x(η))− gj(x(η))
∣∣ ≥ 1√

n
‖g(x(η))− g(x(η))‖ ,
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and therefore, condition (A4), (iii), implies that

∣∣gj(x(η))− gj(x(η))
∣∣ ≥ L1√

n
‖x(η)− x(η)‖ > L1ε0√

n
.

According to (3.2), we have for all t ∈ [ζ, ζ + τ] that

∣∣gj(x(t))− gj(x(t))
∣∣ > ∣∣gj(x(η))− gj(x(η))

∣∣− L1ε0

2
√

n
>

L1ε0

2
√

n
.

One can confirm by using the last inequality that∥∥∥∥ ∫ ζ+τ

ζ
[g(x(s))− g(x(s))]ds

∥∥∥∥ >
τL1ε0

2
√

n
.

For t ∈ [ζ, ζ + τ], the functions φx(t)(t) and φx(t)(t) satisfy the relations

φx(t)(t) = φx(t)(ζ) +
∫ t

ζ

[
Aφx(t)(s) + f

(
s, φx(t)(s)

)
+ g(x(s))

]
ds

+ ∑
ζ≤θk<t

[
Bφx(t)(θk) + W

(
φx(t)(θk)

)]
and

φx(t)(t) = φx(t)(ζ) +
∫ t

ζ

[
Aφx(t)(s) + f

(
s, φx(t)(s)

)
+ g(x(s))

]
ds

+ ∑
ζ≤θk<t

[
Bφx(t)(θk) + W

(
φx(t)(θk)

)]
,

respectively. Thus, we have that∥∥∥φx(t)(ζ + τ)− φx(t)(ζ + τ)
∥∥∥

≥
∥∥∥∥ ∫ ζ+τ

ζ
[g(x(s))− g(x(s))]ds

∥∥∥∥− ∥∥∥φx(t)(ζ)− φx(t)(ζ)
∥∥∥

−
∫ ζ+τ

ζ

(
‖A‖+ L f

) ∥∥∥φx(t)(s)− φx(t)(s)
∥∥∥ ds− ∑

ζ≤θk<ζ+τ

(‖B‖+ LW)
∥∥∥φx(t)(θk)− φx(t)(θk)

∥∥∥
>

τL1ε0

2n
−
[
1 + τ(‖A‖+ L f ) + p

(
1 +

τ

T

)
(‖B‖+ LW)

]
sup

t∈[ζ,ζ+τ]

∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ .

The last inequality implies that supt∈[ζ,ζ+τ]

∥∥φx(t)(t)− φx(t)(t)
∥∥ > M, where

M =
τL1ε0

2
√

n
[
2 + τ(‖A‖+ L f ) + p

(
1 +

τ

T

)
(‖B‖+ LW)

] .

Set θ = min1≤k≤p (θk+1 − θk) , and define the numbers

ε1 =
M
2

min

{
1,

1− LW
∥∥(I + B)−1

∥∥
‖(I + B)−1‖ ,

1
‖I + B‖+ LW

}
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and

∆ = min

{
θ,

M
4[(‖A‖+ L f )K0 + Mg](1 + ‖I + B‖+ LW)

,

M
(
1− LW

∥∥(I + B)−1
∥∥)

4[(‖A‖+ L f )K0 + Mg][1 + (1− LW) ‖(I + B)−1‖]

}
.

It is worth noting that the numbers ε1 and ∆ are positive according to condition (A7).
Suppose that there exists a number σ ∈ [ζ, ζ + τ] such that

sup
t∈[ζ,ζ+τ]

∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ =

∥∥∥φx(t)(σ)− φx(t)(σ)
∥∥∥ .

Let

κ =

{
σ, if σ ≤ ζ + τ/2,

σ− ∆, if σ > ζ + τ/2.

Since ∆ ≤ θ, there exists at most one impulsive moment on the interval (κ, κ + ∆).
First of all, we will consider the case σ > ζ + τ/2. Assume that there exists an impulsive

moment θk0 ∈ (κ, κ + ∆). For t ∈ (θk0 , κ + ∆), we have that

∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ ≥ ∥∥∥φx(t)(κ + ∆)− φx(t)(κ + ∆)

∥∥∥− ∥∥∥∥ ∫ t

κ+∆
A
(

φx(t)(s)− φx(t)(s)
)

ds
∥∥∥∥

−
∥∥∥∥ ∫ t

κ+∆

[
f
(

s, φx(t)(s)
)
− f

(
s, φx(t)(s)

)]
ds
∥∥∥∥

−
∥∥∥∥ ∫ t

κ+∆
[g(x(s))− g(x(s))]ds

∥∥∥∥
> M− 2∆[K0(‖A‖+ L f ) + Mg]

>
M
2

≥ ε1.

Making use of the equations

φx(t)(θk0+) = (I + B)φx(t)(θk0) + W(φx(t)(θk0))

and

φx(t)(θk0+) = (I + B)φx(t)(θk0) + W(φx(t)(θk0))

we obtain that

∥∥∥φx(t)(θk0)− φx(t)(θk0)
∥∥∥ >

M− 2∆[K0
(
‖A‖+ L f

)
+ Mg]

‖I + B‖+ LW
.
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By means of the last inequality, one can verify for t ∈ (κ, θk0 ] that∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ ≥ ∥∥∥φx(t)(θk0)− φx(t)(θk0)

∥∥∥− ∥∥∥∥ ∫ t

θk0

A
(

φx(t)(s)− φx(t)(s)
)

ds
∥∥∥∥

−
∥∥∥∥ ∫ t

θk0

[
f
(

s, φx(t)(s)
)
− f

(
s, φx(t)(s)

)]
ds
∥∥∥∥

−
∥∥∥∥ ∫ t

θk0

[g(x(s))− g(x(s))]ds
∥∥∥∥

>
M− 2∆[K0(‖A‖+ L f ) + Mg](1 + ‖I + B‖+ LW)

‖I + B‖+ LW

≥ M
2(‖I + B‖+ LW)

≥ ε1.

Therefore, we have for t ∈ (κ, κ + ∆) that
∥∥φx(t)(t)− φx(t)(t)

∥∥ > ε1.
On the other hand, if the interval (κ, κ + ∆) does not contain any impulsive moment, then

one can confirm that
∥∥φx(t)(t)− φx(t)(t)

∥∥ > M/2 for all t ∈ (κ, κ + ∆). Hence, the inequality∥∥φx(t)(t)− φx(t)(t)
∥∥ > ε1 holds for all t ∈ (κ, κ + ∆) regardless of the existence of an impulsive

moment inside the interval.
Next, let us take into account the case σ ≤ ζ + τ/2. In the case that the interval (κ, κ + ∆)

contains an impulsive moment θk0 , the inequality∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ > M− 2∆[K0(‖A‖+ L f ) + Mg] > ε1

is valid for t ∈ (κ, θk0 ]. Therefore, we have that

∥∥∥φx(t)(θk0+)− φx(t)(θk0+)
∥∥∥ ≥ (1− LW

∥∥(I + B)−1
∥∥

‖(I + B)−1‖

)∥∥∥φx(t)(θk0)− φx(t)(θk0)
∥∥∥

>

(
1− LW

∥∥(I + B)−1
∥∥

‖(I + B)−1‖

) [
M− 2∆

(
K0(‖A‖+ L f ) + Mg

)]
.

The last inequality implies for t ∈ (θk0 , κ + ∆) that

∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ >

(
1− LW

∥∥(I + B)−1
∥∥

‖(I + B)−1‖

)
M

− 2∆

(
1 +

1− LW
∥∥(I + B)−1

∥∥
‖(I + B)−1‖

)
[K0(‖A‖+ L f ) + Mg]

≥
(

1− LW
∥∥(I + B)−1

∥∥
‖(I + B)−1‖

)
M
2

≥ ε1.

If no impulsive moments take place inside the interval (κ, κ + ∆), then it can be deduced that∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ >

M
2

, t ∈ (κ, κ + ∆).



Replication of period-doubling route to chaos in impulsive systems 11

Thus, the inequality
∥∥φx(t)(t)− φx(t)(t)

∥∥ > ε1, t ∈ (κ, κ + ∆), is valid for the case σ ≤ ζ + τ/2
too.

Now, suppose that there exists an impulsive moment θk̃ ∈ [ζ, ζ + τ] such that

sup
t∈[ζ,ζ+τ]

∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ =

∥∥∥φx(t)(θk̃+)− φx(t)(θk̃+)
∥∥∥ .

Let us denote

κ =

{
θk̃, if θk̃ ≤ ζ + τ/2,

θk̃ − ∆, if θk̃ > ζ + τ/2.

At first, we will consider the case θk̃ > ζ + τ/2. Since the inequality

∥∥∥φx(t)(θk̃)− φx(t)(θk̃)
∥∥∥ ≥

∥∥∥φx(t)(θk̃+)− φx(t)(θk̃+)
∥∥∥

‖I + B‖+ LW

is valid, one can attain for t ∈ (κ, κ + ∆) that∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ >

M
‖I + B‖+ LW

− 2∆[K0(‖A‖+ L f ) + Mg]

>
M

2 (‖I + B‖+ LW)

≥ ε1.

On the other hand, if θk̃ ≤ ζ + τ/2, then it can be shown for t ∈ (κ, κ + ∆) that∥∥∥φx(t)(t)− φx(t)(t)
∥∥∥ > M− 2∆[K0(‖A‖+ L f ) + Mg] >

M
2
≥ ε1.

Consequently, system (2.2) replicates the sensitivity of (2.1).

Remark 3.3. Even though the impulsive system (2.2) replicates the sensitivity of (2.1) under
the conditions (A1)–(A7), system (2.2) is not chaotic for fixed x(t) ∈ A since it is dissipative.

4 Period-doubling cascade

In this part of the paper, we suppose that there exists a function G : R × Rm × R → Rm

satisfying the periodicity condition G(t + T, x, µ) = G(t, x, µ) for all t ∈ R, x ∈ Rm, µ ∈ R,
where µ is a parameter, such that for some finite value µ∞ of the parameter the function F(t, x)
on the right-hand side of system (2.1) is equal to G(t, x, µ∞).

System (2.1) is said to admit a period-doubling cascade [9, 14, 22, 36] if there exists a se-
quence

{
µj
}

, j ∈ N, of period-doubling bifurcation values with µj → µ∞ as j → ∞ such that
as the parameter µ increases or decreases through µj the system

x′ = G(t, x, µ) (4.1)

undergoes a period-doubling bifurcation, i.e., there exists a natural number λ such that for
each j ∈N a new periodic solution with period λ2jT appears in the dynamics of system (4.1),
and consequently, system (4.1) possesses infinitely many unstable periodic solutions all lying
in a bounded region for µ = µ∞.
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We say that the impulsive system (2.2) replicates the period-doubling cascade of system
(2.1) if for each periodic solution x(t) ∈ A of (2.1) system (2.2) admits a periodic solution with
the same period.

Under the conditions (A1)–(A5), one can verify using the results of [4, 35] that if x(t) ∈ A

is a λ0T-periodic solution of system (2.1) for some natural number λ0, then the corresponding
bounded solution φx(t)(t) of (2.2) is also λ0T-periodic. Moreover, the instability of all periodic
solutions of (2.2) is ensured by Theorem 3.2. Therefore, we have the following theorem.

Theorem 4.1. Assume that the conditions (A1)–(A7) are valid. If system (2.1) admits a period-
doubling cascade, then the impulsive system (2.2) replicates the period-doubling cascade of (2.1).

A corollary of Theorem (4.1) is as follows.

Corollary 4.2. Assume that the conditions (A1)–(A7) are valid. If system (2.1) admits a period-
doubling cascade, then the same is true for the coupled system (2.1)–(2.2).

Remark 4.3. One can confirm that the sequence {µj} of period-doubling bifurcation parameter
values is exactly the same for both system (2.1) and the coupled system (2.1)–(2.2). Therefore,
if system (2.1) obeys the Feigenbaum universality [14], then the same is true also for the
coupled system (2.1)–(2.2). More precisely, when limj→∞

µj−µj+1
µj+1−µj+2

is evaluated, the universal
constant 4.6692016 . . . known as the Feigenbaum number is achieved, and this number is the
same for both system (2.1) and the coupled system (2.1)–(2.2).

The next section is devoted to illustrative examples that support the theoretical results.

5 Examples

In this part of the paper, two examples will be presented. In the first example the replication
of sensitivity in an impulsive system driven by a chaotic Lorenz system will be demonstrated
numerically, whereas in the second one replication of period-doubling cascade in an impulsive
system driven by a Duffing equation will be discussed.

5.1 Example 1

Let us consider the Lorenz system [25]

x′1 = −10x1 + 10x2,

x′2 = −x1x3 + 28x1 − x2,

x′3 = x1x2 −
8
3

x3.

(5.1)

It was demonstrated in [25,41] that system (5.1) is sensitive and it possesses a chaotic attractor.
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Next, we take into account the impulsive system

y′1 = −3y1 + 0.05 sin(πt) + 2.4x1(t),

y′2 = −2y2 + 0.15 cos y2 − 2x2(t),

y′3 = −4y3 + 0.2 tanh y1 + 0.6x3(t), t 6= θk,

∆y1|t=θk = −
2
3

y1,

∆y2|t=θk = −
2
3

y2 + 0.1 arctan y3,

∆y3|t=θk = −
2
3

y3,

(5.2)

where (x1(t), x2(t), x3(t)) is a solution of system (5.1) and θk = 2k, k ∈ Z. System (5.2) is in
the form of (2.2) with A = diag(−3,−2,−4), B = diag

(
− 2

3 ,− 2
3 ,− 2

3

)
,

f (t, y1, y2, y3) = (0.05 sin(πt), 0.15 cos y2, 0.2 tanh y1) ,

g(x1, x2, x3) = (2.4x1,−2x2, 0.6x3),

and

W(y1, y2, y3) = (0, 0.1 arctan y3, 0).

One can verify that the conditions (A1)–(A7) are satisfied for system (5.2) with N = 1,
ω = 2, T = 2, p = 1, M f = 0.255, MW = 0.05π, L f = 0.2, L1 = 0.6, L2 = 2.4, and LW = 0.1.
According to Theorem 3.2, the impulsive system (5.2) replicates the sensitivity of the Lorenz
system (5.1). Figure 5.1 shows the 3-dimensional projections of two initially nearby solutions
of the unidirectionally coupled systems (5.1)–(5.2) on the y1 − y2 − y3 space. The trajectory in
red corresponds to the initial data x1(0.5) = −7.61, x2(0.5) = −2.35, x3(0.5) = 33.04, y1(0.5) =
−0.53, y2(0.5) = −5.15, y3(0.5) = 5.19, whereas the trajectory in blue corresponds to the initial
data x1(0.5) = −7.65, x2(0.5) = −2.42, x3(0.5) = 33.02, y1(0.5) = −0.51, y2(0.5) = −5.16,
y3(0.5) = 5.18. The time interval [0.5, 3.65] is used in the simulation, and both trajectories
make a jump at t = 2. Figure 5.1 supports the result of Theorem 3.2 such that even if the
trajectories are initially nearby, later they diverge.

To show the irregular behavior of system (5.2), we depict in Figure 5.2 the 3-dimensional
projection of the trajectory of the coupled system (5.1)–(5.2) with x1(0.5) = −10.74, x2(0.5) =
−13.35, x3(0.5) = 26.51, y1(0.5) = −5.94, y2(0.5) = 7.67, y3(0.5) = 3.52 on the y1 − y2 −
y3 space. The irregular behavior seen in Figure 5.2 supports the existence of chaos in the
dynamics of the coupled system (5.1)–(5.2). According to the impulse conditions in (5.2), the
irregular trajectory represented in Figure 5.2 has discontinuities at the moments t = θk.

5.2 Example 2

It was demonstrated in paper [37] that the Duffing equation

x′′ + 0.3x′ + x3 = µ cos t, (5.3)

where µ is a parameter, displays period-doubling bifurcations and leads to chaos at µ = µ∞ ≡
40.

Using the variables x1 = x and x2 = x′, equation (5.3) can be rewritten as a system in the
form

x′1 = x2,

x′2 = −0.3x2 − x3
1 + µ cos t.

(5.4)
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Figure 5.1: Replication of sensitivity in system (5.2). The figure manifests the
divergence of two initially nearby trajectories shown in red and blue, i.e., the
impulsive system (5.2) replicates the sensitivity of the Lorenz system (5.1). The
time interval [0.5, 3.65] is used, and both trajectories make a jump at t = 2.

One can confirm that the chaotic attractor of system (5.4) takes place inside the compact region

Λ =
{
(x1, x2) ∈ R2 : |x1| ≤ 5.5, |x2| ≤ 14

}
.

Next, we consider the impulsive system

y′1 = −y1 − 4y2 + 0.12 arctan y2 + 2.1x1(t)− 0.3 sin(x1(t)),

y′2 = y1 − 3y2 + 0.7 cos t− 1.6x2(t) + 0.01x2
2(t), t 6= θk,

∆y1|t=θk = −0.5y1 + 0.08 sin y2,

∆y2|t=θk = −0.5y2,

(5.5)

where (x1(t), x2(t)) is a solution of (5.4) and θk = πk, k ∈ Z.
The impulsive system (5.5) is in the form of (2.2) with

A =

(
−1 −4

1 −3

)
, B = diag (−0.5,−0.5) ,

f (t, y1, y2) = (0.5 arctan y2, 0.7 cos t) ,

g(x1, x2) = (2.1x1 − 0.3 sin x1,−1.6x2 + 0.01x2
2),

and

W(y1, y2) = (0.08 sin y2, 0).

Let us denote by U(t, s) the transition matrix of the linear homogeneous system

u′1 = −u1 − 4u2,

u′2 = u1 − 3u2, t 6= θk,

∆u1|t=θk = −0.5u1,

∆u2|t=θk = −0.5u2.

(5.6)
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Figure 5.2: Irregular behavior of system (5.2). The discontinuous irregular tra-
jectory of the impulsive system (5.2) supports the result of Theorem 3.2 one
more time.

It can be verified that

U(t, s) = e−2(t−s)
(

1
2

)i([s,t))

P

(
cos(
√

3(t− s)) − sin(
√

3(t− s))

sin(
√

3(t− s)) cos(
√

3(t− s))

)
P−1, t > s,

where P =
(√

3 1
0 1

)
. The conditions (A1)–(A7) are satisfied for system (5.5) with N = 2.48421,

ω = 2, T = 2π, p = 2, M f = 0.72494, MW = 0.08, L f = 0.12, L1 = 1.32, L2 = 2.4, and
LW = 0.08. Moreover, the eigenvalues of the matrix

A +
p
T

log(I + B) =

 −1− ln 2
π

−4

1 −3− ln 2
π


are −2− ln 2

π ± i
√

3.
According to Theorem 4.1, the impulsive system (5.5) replicates the period-doubling cas-

cade of the Duffing equation (5.3). In order to demonstrate this numerically, we depict in
Figure 5.3 the periodic orbits as well as an irregular trajectory. Figure 5.3, (a), (b), and (c)
respectively show the period 1, period 2, and period 4 orbits of (5.5). The parameter values
µ = 31.7, µ = 34.3, and µ = 36.1 are utilized in Figure 5.3, (a), (b), and (c), respectively. On
the other hand, taking µ = 40 in the coupled system (5.4)–(5.5), we represent in Figure 5.3 (d)
the 2-dimensional projection of the trajectory of (5.4)–(5.5) corresponding to the initial data
x1(0.2) = 3.16, x2(0.2) = 1.86, y1(0.2) = 0.71, y2(0.2) = 0.18 on the y1–y2 plane. Figure 5.3
supports the result of Theorem 4.1 such that the period-doubling cascade of (5.3) is replicated.
Moreover, we represent in Figure 5.4, the time-series of the y2-coordinate of the trajectory
shown in Figure 5.3, (d). The irregular behavior of the time-series supports the presence of
chaos in the coupled system (5.4)–(5.5) with µ = 40.
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Figure 5.3: Periodic and irregular orbits of the impulsive system (5.5). (a) Period
1 orbit. (b) Period 2 orbit. (c) Period 4 orbit. (d) Irregular orbit. The parameter
values µ = 31.7, µ = 34.3, µ = 36.1, and µ = 40 are utilized in (a), (b), (c), and
(d), respectively. The figure reveals that the impulsive system (5.5) replicates the
period-doubling cascade of the Duffing equation (5.3).
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Figure 5.4: Time-series of the y2-coordinate of system (5.5) with µ = 40. The
initial data x1(0.2) = 3.16, x2(0.2) = 1.86, y1(0.2) = 0.71, and y2(0.2) = 0.18 are
utilized.
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