

Existence of Peregrine type solutions in fractional reaction-diffusion equations

Agustín Besteiro¹ and Diego Rial^{1, 2}

¹Instituto de Matemática Luis Santaló CONICET–UBA, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, Buenos Aires C1428EGA, Argentina ²Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, Buenos Aires C1428EGA, Argentina

Received 30 August 2018, appeared 9 February 2019

Communicated by László Simon

Abstract. In this article, we analyze the existence of Peregrine type solutions for the fractional reaction–diffusion equation by applying splitting-type methods. Peregrine type functions have two main characteristics, these are direct sum of functions of periodic type and functions that tend to zero at infinity. Well-posedness results are obtained for each particular characteristic, and for both combined.

Keywords: fractional diffusion, global existence, splitting method.

2010 Mathematics Subject Classification: 35K55, 35K57, 35R11.

1 Introduction

We study the non-autonomous system

$$\partial_t u + \sigma(-\Delta)^\beta u = F(t, u), \tag{1.1}$$

where $u(x,t) \in Z$ for $x \in \mathbb{R}^n$, t > 0, $\sigma \ge 0$ and $0 < \beta \le 1$, $F : \mathbb{R} \times Z \to Z$ a continuous map and *Z* a Banach space. We consider the initial value problem $u(x,0) = u_0(x)$.

The aim of this paper is to analyze the existence of solutions for the fractional reactiondiffusion equation by applying splitting methods to functions that have two main characteristics: these are direct sum of functions of periodic type and functions that vanish at infinity. We will call them from now on, "Peregrine type solutions". A similar type of solution is also studied in the context of the non-linear Schrödinger equation, under the name of "Peregrine solitons". These solutions were analyzed in [22], and have multiple applications, for example [5,12,16,17,26]. To achieve our goal, we use recent results concerning global existence on fractional reaction–diffusion equations [6] based in similar numerical splitting techniques [7,13], introduced for other purposes. Fractional reaction–diffusion equations are frequently used on

¹Corresponding author. Email: abesteiro@dm.uba.ar

many different topics of applied mathematics such as biological models, population dynamics models, nuclear reactor models, just to name a few (see [4,9,10] and references therein).

The fractional model captures the faster spreading rates and power law invasion profiles observed in many applications compared to the classical model ($\beta = 1$) characterized by the behavior of the classical semigroup [15]. The main constituent of the model is the fractional Laplacian, described by standard theories of fractional calculus (for a complete survey see [21]). There are many different equivalent definitions of the fractional Laplacian and its properties are well understood (see [8,14,18–20,23,27]). The non-autonomous non-linear reaction–diffusion equation dynamics were studied by [1,24] and others, analyzing the stability and evolution of the problem.

The paper is organized as follows: In Section 2 we set notations and preliminary results and in Section 3 we present the main results, primarily focusing on each characteristic of the direct sum separately. Finally, both results are combined to reach the existence of Peregrine type solutions.

2 Notations and preliminaries

We investigate continuous, Banach space valued functions. For a Banach space Z, we define $C_u(\mathbb{R}^d, Z)$ as the set of uniformly continuous and bounded functions on \mathbb{R}^d with values in Z. Defining the norm

$$||u||_{\infty,Z} = \sup_{x\in\mathbb{R}^d} |u(x)|_Z,$$

 $C_{\rm u}(\mathbb{R}^d, Z)$ is a Banach space.

It is easy to see that if $g \in L^1(\mathbb{R}^d)$ and $u \in C_u(\mathbb{R}^d, Z)$ the Bochner integral is defined in the following way,

$$(g * u)(x) = \int_{\mathbb{R}^d} g(y)u(x-y)dy$$

This determines an element of $C_u(\mathbb{R}^d, Z)$ and the linear operator $u \mapsto g * u$ is continuous (see [2,11]). The following results show that the operator $-(-\Delta)^{\beta}$ defines a continuous contraction semigroup in the Banach space $C_u(\mathbb{R}^d, Z)$. We define the space $C_0(\mathbb{R}^d, Z)$ of functions that converge to 0 when $|x| \to \infty$. The following lemma is a consequence of Lévy–Khintchine formula for infinitely divisible distributions and properties of the Fourier transform.

Lemma 2.1. Let $0 < \beta \leq 1$ and $g_{\beta} \in C_0(\mathbb{R}^d)$ such that $\hat{g}_{\beta}(\xi) = e^{-|\xi|^{2\beta}}$. Then g_{β} is positive, invariant under rotations of \mathbb{R}^d , integrable and

$$\int_{\mathbb{R}^d} g_\beta(x) dx = 1.$$

Proof. The first statement follows from Theorem 14.14 of [25], the remaining claims are an easy consequence of the definition of \hat{g}_{β} .

Based on the previous lemma, we recall some results about Green's function related to the linear operator $\partial_t + \sigma(-\Delta)^{\beta}$.

Proposition 2.2. Let $\sigma > 0$ and $0 < \beta \leq 1$, the function $G_{\sigma,\beta}$ given by

$$G_{\sigma,\beta}(t,x) = (\sigma t)^{-\frac{d}{2\beta}} g_{\beta}((\sigma t)^{-\frac{1}{2\beta}}x),$$

verifies

i.
$$G_{\sigma,\beta}(\cdot,t) > 0;$$

ii. $G_{\sigma,\beta}(\cdot,t) \in L^1(\mathbb{R}^d)$ and

$$\int_{\mathbb{R}^d} G_{\sigma,\beta}(t,x) dx = 1;$$

iii.
$$G_{\sigma,\beta}(\cdot,t) * G_{\sigma,\beta}(\cdot,t') = G_{\sigma,\beta}(\cdot,t+t')$$
, for $t,t' > 0$;

iv.
$$\partial_t G_{\sigma,\beta} + \sigma(-\Delta)^{\beta} G_{\sigma,\beta} = 0$$
 for $t > 0$

Proof. The first and second statements are a consequence of the definition of \hat{g}_{β} . The third and fourth statements are immediate applying Fourier transform.

In the following proposition, we have that the linear operator $-\sigma(-\Delta)^{\beta}$ defines a continuous contraction semigroup in $C_u(\mathbb{R}^d, Z)$.

Proposition 2.3. For any $\sigma > 0$ and $0 < \beta \leq 1$, the map $S : \mathbb{R}_+ \to \mathcal{B}(C_u(\mathbb{R}^d, Z))$ defined by $S(t)u = G_{\sigma,\beta}(\cdot, t) * u$ is a continuous contraction semigroup.

Proof. The proof can be found in [6, Proposition 2.2].

Next, we consider integral solutions of the problem (1.1). We say that $u \in C([0,T], C_u(\mathbb{R}^d, Z))$ is a mild solution of (1.1) iff u verifies

$$u(t) = S(t)u_0 + \int_0^t S(t - t')F(t', u(t'))dt'.$$
(2.1)

A continuous map $F : \mathbb{R}_+ \times Z \to Z$ is called locally Lipschitz if, given R, T > 0 there exists L > 0 such that if $t \in [0, T]$ and $|z|_Z, |\tilde{z}|_Z \leq R$, then

$$|F(t,z) - F(t,\tilde{z})|_Z \le L|z - \tilde{z}|_Z.$$

In this case, for any $z_0 \in Z$ there exists a unique (maximal) solution of the Cauchy problem

$$z(t) = z_0 + \int_{t_0}^t F(t', z(t'))dt'$$
(2.2)

defined in $[t_0, t_0 + T^*(t_0, z_0))$, with $T^*(t_0, z_0)$ the maximal time of existence. It is easy to see that there exists a nonincreasing function $\mathcal{T} : \mathbb{R}^2_+ \to \mathbb{R}_+$, such that

$$\mathcal{T}(T,R) \le \inf\{T^*(t_0,z_0): 0 \le t_0 \le T, |z_0|_Z \le R\}$$

Also, one of the following alternatives holds:

- $T^*(t_0, z_0) = \infty;$
- $T^*(t_0, z_0) < \infty$ and $|z(t)|_Z \to \infty$ when $t \uparrow t_0 + T^*(t_0, z_0)$.

We can see that $F : \mathbb{R}_+ \times C_u(\mathbb{R}^d, Z) \to C_u(\mathbb{R}^d, Z)$, given by F(t, u)(x) = F(t, u(x)) is continuous and locally Lipschitz. Therefore, we can consider problem (2.2) in $C_u(\mathbb{R}^d, Z)$.

We denote by $\mathbb{N} : \mathbb{R} \times \mathbb{R} \times C_u(\mathbb{R}^d, Z) \to C_u(\mathbb{R}^d, Z)$ the flow generated by the integral equation (2.2) as $u(t) = \mathbb{N}(t, t_0, u_0)$, defined for $t_0 \le t < t_0 + T^*(t_0, u_0)$.

We recall well-known local existence results for evolution equations.

Theorem 2.4. There exists a function $T^* : C_u(\mathbb{R}^d, Z) \to \mathbb{R}_+$ such that for $u_0 \in C_u(\mathbb{R}^d, Z)$, exists a unique $u \in C([0, T^*(u_0)), C_u(\mathbb{R}^d, Z))$ mild solution of (1.1) with $u(0) = u_0$. Moreover, one of the following alternatives holds:

- $T^*(u_0) = \infty;$
- $T^*(u_0) < \infty$ and $\lim_{t \uparrow T^*(u_0)} \|u(t)\|_{\infty, Z} = \infty$.

Proof. See Theorem 4.3.4 in [11].

Proposition 2.5. Under conditions of the theorem above, we have the following statements:

- 1. $T^*: C_u(\mathbb{R}^d, Z) \to \mathbb{R}_+$ is lower semi-continuous;
- 2. If $u_{0,n} \to u_0$ in $C_u(\mathbb{R}^d, Z)$ and $0 < T < T^*(u_0)$, then $u_n \to u$ in the Banach space $C([0,T], C_u(\mathbb{R}^d, Z))$.

Proof. See Proposition 4.3.7 in [11].

3 Peregrine type solutions

In this section, we analyze the existence of Peregrine type solutions for the fractional reactiondiffusion equation by applying splitting methods [6]. Peregrine type functions have two main characteristics: these are direct sum of functions of periodic type and functions that vanish at infinity. As a reference, we consider a solution of the non-linear Schrödinger equation, (Peregrine solitons), which entails these two characteristics. The explicit solution achieved in [22] is:

$$u(x,t) = \left[1 - \frac{4(1+2it)}{1+4x^2+4t^2}\right]e^{i(kx-\omega t)}$$

Well-posedness of the solution is obtained for each particular characteristic, to then combine both results using convergence theorems from [6]. In addition, we observe that the evolution of the periodic part is independent of the part that tends to zero at infinity (Theorem 3.9). For instance, suppose that the non-linearity is autonomous and of polynomial type (as in the Fitzhugh–Nagumo equation, see [3]), such as $F(u) = u^2$. If u(t) = v(t) + w(t), where v(t) is a periodic function and w(t) is a function that vanishes when the spatial variable tends to infinity, then we have

$$F(u) = F(v + w) = (v + w)^2 = v^2 + 2vw + w^2$$

where, v^2 is periodic and $2vw + w^2$ tends to zero. In this specific case we can appreciate the *absorption*, i.e. the vanishing component is imposed in the crossed terms. As $v^2 = F(v)$, we expect that the periodic part of the initial data evolves independently from the rest for the non-linear equation. In this section we obtain general results to which this example refers.

Let $\{\gamma_1, \ldots, \gamma_q\}$ be q linearly independent vectors of \mathbb{R}^d and let Γ be the lattice generated, i.e., $\Gamma = \{n_1\gamma_1 + \cdots + n_q\gamma_q : n_j \in \mathbb{Z}\}$. A function $u \in C_u(\mathbb{R}^d, Z)$ is Γ -periodic if $u(x + \gamma) = u(x)$ for any $\gamma \in \Gamma$. We denote the set of Γ -periodic functions of $C_u(\mathbb{R}^d, Z)$ by $C_u(\mathbb{R}^d/\Gamma, Z)$.

We recall the notation of the space $C_0(\mathbb{R}^d, Z)$ of functions that converge to 0 when $|x| \to \infty$. It is easy to prove the following result.

Proposition 3.1. $C_u(\mathbb{R}^d/\Gamma, Z), C_0(\mathbb{R}^d, Z) \subset C_u(\mathbb{R}^d, Z)$ are closed subspaces. Moreover, $C_0(\mathbb{R}^d, Z) \cap C_u(\mathbb{R}^d/\Gamma, Z) = \{0\}$.

Proof. Let $u \in C_u(\mathbb{R}^d/\Gamma, Z)$, we set $x \in \mathbb{R}^d$ and $u(x) = \lim_{|\gamma| \to \infty} u(x + \gamma)$. If $u \in C_0(\mathbb{R}^d, Z)$, then $\lim_{|\gamma| \to \infty} u(x + \gamma) = 0$. Therefore, u(x) = 0 for any $x \in \mathbb{R}^d$.

Lemma 3.2. Let X be a Banach space and let $X_1, X_2 \subset X$ be closed subspaces such that $X_1 \cap X_2 = \{0\}$, the following statements are equivalent

- *i*. $X_1 \oplus X_2$ *is closed*.
- *ii.* The projector $P : X_1 \oplus X_2 \rightarrow X_1$ is continuous.

Proof. Since $X_1 \oplus X_2$ is a Banach space, the linear map $\phi : X_1 \times X_2 \to X_1 \oplus X_2$ given by $\phi(x_1, x_2) = x_1 + x_2$ is bijective, and continuous. By the closed graph theorem we have ϕ^{-1} is also a continuous operator. We express the projector as $P = \pi_1 \phi^{-1}$ and then *P* is continuous. On the other hand, $X_1 \oplus X_2 = P^{-1}X_1$, since *P* continuous and X_1 a closed subspace, $X_1 \oplus X_2$ is closed.

Lemma 3.3. The projector $P : C_u(\mathbb{R}^d/\Gamma, Z) \oplus C_0(\mathbb{R}^d, Z) \to C_u(\mathbb{R}^d/\Gamma, Z)$ is continuous.

Proof. Let $u = v + w \in C_u(\mathbb{R}^d/\Gamma, Z) \oplus C_0(\mathbb{R}^d, Z)$, $v \in C_u(\mathbb{R}^d/\Gamma, Z)$ and $w \in C_0(\mathbb{R}^d, Z)$. For any $x \in \mathbb{R}^d$, we can see that

$$v(x) = \lim_{\substack{|\gamma| \to \infty \\ \gamma \in \Gamma}} v(x + \gamma) = \lim_{\substack{|\gamma| \to \infty \\ \gamma \in \Gamma}} u(x + \gamma),$$

then $|v(x)|_Z \le ||u||_{\infty,Z}$, which implies $||v||_{\infty,Z} = ||Pu||_{\infty,Z} \le ||u||_{\infty,Z}$.

Corollary 3.4. The direct sum $X_{\Gamma,Z} = C_u(\mathbb{R}^d/\Gamma, Z) \oplus C_0(\mathbb{R}^d, Z)$ is a closed subspace of $C_u(\mathbb{R}^d, Z)$.

To obtain the existence of solutions in the space $X_{\Gamma,Z}$, we first study each case separately. We analyze the existence of solutions for the case of Γ periodic functions using the translation function.

Given $\gamma \in \mathbb{R}^d$ we define $\mathsf{T}_{\gamma} : C_u(\mathbb{R}^d, Z) \to C_u(\mathbb{R}^d, Z)$ as $(\mathsf{T}_{\gamma}u)(x) = u(x + \gamma)$. Since $\mathsf{S}(t)$ is a convolution operator, it is easy to see that $\mathsf{T}_{\gamma}\mathsf{S}(t) = \mathsf{S}(t)\mathsf{T}_{\gamma}$. Using that $\mathsf{T}_{\gamma}F(t, u) = F(t, \mathsf{T}_{\gamma}u)$ we obtain

$$\mathsf{T}_{\gamma}u(t) = \mathsf{S}(t)\mathsf{T}_{\gamma}u_0 + \int_0^t \mathsf{S}(t-t')F(t,\mathsf{T}_{\gamma}u(t'))dt'.$$

Therefore, $T_{\gamma}u$ is the solution of (2.1) with initial data $T_{\gamma}u_0$.

Proposition 3.5. If $u_0 \in C_u(\mathbb{R}^d/\Gamma, Z)$, then the solution u of the equation (2.1) verifies $u(t) \in C_u(\mathbb{R}^d/\Gamma, Z)$ for $0 \le t < T^*(u_0)$.

Proof. Since $\mathsf{T}_{\gamma}u_0 = u_0$ for any $\gamma \in \Gamma$, $\mathsf{T}_{\gamma}u, u$ are solutions with the same initial data. From uniqueness, we have $\mathsf{T}_{\gamma}u = u$. Therefore, $u(t) \in C_u(\mathbb{R}^d/\Gamma, Z)$.

We now analyze the existence of solution in the space $C_0(\mathbb{R}^d, Z)$. We first study the linear part.

Lemma 3.6. If $u \in C_0(\mathbb{R}^d, Z)$, then $S(t)u \in C_0(\mathbb{R}^d, Z)$ for $t \in \mathbb{R}_+$.

Proof. Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence with $|x_n| \to \infty$. Then we have

$$|(\mathsf{S}(t)u)(x_n)|_Z \leq \int_{\mathbb{R}^d} G_{\sigma,\beta}(t,y)|u(x_n-y)|_Z dy.$$

As $G_{\sigma,\beta}(t,\cdot)|u(x_n-\cdot)|_Z \leq G_{\sigma,\beta}(t,\cdot)||u||_{\infty,Z}$ and $G_{\sigma,\beta}(t,y)|u(x_n-y)|_Z \to 0$, from dominated convergence theorem we obtain $\lim_{n\to\infty} |(\mathsf{S}(t)u)(x_n)|_Z = 0$. Since $\{x_n\}_{n\in\mathbb{N}}$ is an arbitrary sequence, we have $\mathsf{S}(t)u \in C_0(\mathbb{R}^d, Z)$.

We now study the non-linear part.

Lemma 3.7. Let $u_0, \tilde{u}_0 \in C_u(\mathbb{R}^d, Z)$, if $u_0 - \tilde{u}_0 \in C_0(\mathbb{R}^d, Z)$, then $N(t, t_0, u_0) - N(t, t_0, \tilde{u}_0) \in C_0(\mathbb{R}^d, Z)$ for $0 \le t < \min\{T^*(u_0), T^*(\tilde{u}_0)\}$.

Proof. Let $u(t) = N(t, t_0, u_0)$ and $\tilde{u}(t) = N(t, t_0, \tilde{u}_0)$, for any $x \in \mathbb{R}^d$ we have

$$\begin{aligned} |u(x,t) - \tilde{u}(x,t)|_{Z} &\leq |u_{0}(x) - \tilde{u}_{0}(x)|_{Z} + \int_{0}^{t} |F(t',u(x,t')) - F(t',\tilde{u}(x,t'))|_{Z} dt' \\ &\leq |u_{0}(x) - \tilde{u}_{0}(x)|_{Z} + L \int_{0}^{t} |u(x,t') - \tilde{u}(x,t')|_{Z} dt'. \end{aligned}$$

From Gronwall's lemma, we obtain the inequality $|u(x,t) - \tilde{u}(x,t)|_Z \leq e^{Lt}|u_0(x) - \tilde{u}_0(x)|_Z$. Given $\varepsilon > 0$, there exists r > 0 such that $|u_0(x) - \tilde{u}_0(x)|_Z < \varepsilon e^{-Lt}$ for |x| > r, then $|u(x,t) - \tilde{u}(x,t)|_Z < \varepsilon$, which implies $u(t) - \tilde{u}(t) \in C_0(\mathbb{R}^d, Z)$.

For the next proposition, we recall results from [6], based in numerical splitting techniques [7, 13] for evolution equations. These are used to prove the convergence of the approximate solution, that is constructed by the time-splitting of the linear and the non-linear component.

Proposition 3.8. Let $u_0, \tilde{u}_0 \in C_u(\mathbb{R}^d, Z)$, such that $u_0 - \tilde{u}_0 \in C_0(\mathbb{R}^d, Z)$ and let u, \tilde{u} be the corresponding solutions of (2.1). For any $0 \leq t < \min\{T^*(u_0), T^*(\tilde{u}_0)\}$, it is verified $u(t) - \tilde{u}(t) \in C_0(\mathbb{R}^d, Z)$.

Proof. For $t \in [0, \min\{T^*(u_0), T^*(\tilde{u}_0)\})$, let $n \in \mathbb{N}$, h = t/n and $\{U_{h,k}\}_{0 \le k \le n}, \{\tilde{U}_{h,k}\}_{0 \le k \le n}$ sequences defined in terms of a recurrence, in the following way.

Let $\{U_{h,k}\}_{0 \le k \le n}$, $\{V_{h,k}\}_{1 \le k \le n}$ be the sequences given by $U_{h,0} = u_0$,

$$V_{h,k+1} = \mathsf{S}(h)U_{h,k},\tag{3.1a}$$

$$U_{h,k+1} = \mathsf{N}(kh+h,kh+h/2,V_{h,k+1}), \quad k = 0,\dots,n-1.$$
(3.1b)

We claim that $U_{h,k} - \tilde{U}_{h,k} \in C_0(\mathbb{R}^d, Z)$ for k = 0, ..., n. Clearly, the assertion is true for k = 0. If $U_{h,k-1} - \tilde{U}_{h,k-1} \in C_0(\mathbb{R}^d, Z)$, from Lemma 3.7, we have $N(kh, kh - h/2, V_{h,k-1}) - N(kh, kh - h/2, \tilde{V}_{h,k-1}) \in C_0(\mathbb{R}^d, Z)$. Using Lemma 3.6, we can see that

$$V_{h,k} - \tilde{V}_{h,k} = S(h)(\mathsf{N}(kh,kh-h/2,V_{h,k-1}) - \mathsf{N}(kh,kh-h/2,\tilde{V}_{h,k-1})) \in C_0(\mathbb{R}^d, Z).$$

We now recall Proposition 4.2 and Theorem 4.2 from [6] that assures us that $U_{h,n} \to u(t)$ and $\tilde{U}_{h,n} \to \tilde{u}(t)$ when $n \to \infty$.

As $C_0(\mathbb{R}^d, Z)$ is closed and $U_{h,n} - \tilde{U}_{h,n} \to u(t) - \tilde{u}(t)$, we obtain the result.

In the following theorem, we prove the existence of solutions in $X_{\Gamma,Z}$, but also the *absorption* mentioned in the introduction concerning the evolution of the initial condition component in the space $C_0(\mathbb{R}^d, Z)$.

Theorem 3.9. For any $u_0 \in X_{\Gamma,Z}$, the solution u of the equation (2.1) satisfies $u(t) \in X_{\Gamma,Z}$ for $0 \le t < T^*(u_0)$. Moreover, if $u_0 = v_0 + w_0$ with $v_0 \in C_u(\mathbb{R}^d/\Gamma, Z)$ and $w_0 \in C_0(\mathbb{R}^d, Z)$, then u(t) = v(t) + w(t), where v is the solution of (2.1) with initial data v_0 and w is the solution of

$$w(t) = S(t)w_0 + \int_0^t S(t - t') \left(F(t, v(t') + w(t')) - F(t, v(t')) \right) dt'$$

Proof. As $u_0 \in X_{\Gamma,Z} \subset C_u(\mathbb{R}^d, Z)$, by Theorem 2.4 we have $u(t) \in C_u(\mathbb{R}^d, Z)$ with maximal time of existence $T^*(u_0)$. We observe that as $v_0 \in C_u(\mathbb{R}^d/\Gamma, Z)$ then by Proposition 3.5 we know that $v(t) \in C_u(\mathbb{R}^d/\Gamma, Z)$ with maximal time of existence $T^*(v_0)$. We define w(t) = u(t) - v(t). By hypothesis, we have $w_0 = w(0) = u(0) - v(0) = u_0 - v_0 \in C_0(\mathbb{R}^d, Z)$ therefore, by Proposition 3.8 we know that $w(t) \in C_0(\mathbb{R}^d, Z)$. Then, we obtain $u(t) = v(t) + w(t) \in X_{\Gamma,Z}$, where $v(t) \in C_u(\mathbb{R}^d/\Gamma, Z)$ and $w(t) \in C_0(\mathbb{R}^d, Z)$ in the interval $[0, T_{min})$ where $T_{min} = \min\{T(u_0), T(v_0)\}$. For $T^*(v_0) \ge T^*(u_0)$, we have the result.

Suppose that $T^*(v_0) < T^*(u_0)$.

Let $T \in (0, T^*(u_0))$ and $M = \max_{0 \le t \le T} ||u(t)||_{\infty, Z}$. We define $\mathcal{T} = \{t \in [0, T] : u(t) \notin X_{\Gamma, Z}\}$, that is, the times for which we have $u(t) \notin X_{\Gamma, Z}$. Suppose that $\mathcal{T} \ne \emptyset$. Then there exists $t_1 = \inf \mathcal{T}$.

Clearly, $t_1 = 0$ is not possible because we have already seen that $u(t) \in X_{\Gamma,Z}$, in the interval $[0, T^*(v_0))$. In the same way, if $t_1 > 0$ and additionally $t_1 < T^*(v_0)$ we have $u(t) \in X_{\Gamma,Z}$ and that is a contradiction. We analyze the remaining case, $t_1 > 0$ and $T > t_1 > T^*(v_0)$.

We observe that, by Theorem 2.4 we obtain that $\lim_{t\to T^*(v_0)} ||v(t)||_{\infty,Z} = +\infty$ but on the other hand, by Lemma 3.3 we have $||v(t)||_{\infty,Z} \le ||P||_{\infty,Z} ||u(t)||_{\infty,Z} \le ||P||_{\infty,Z} M$ that is, the norm v(t) is bounded for $t \in [0, T^*(v_0)) \subset [0, T]$, which is a contradiction.

So we finally have that $u(t) \in X_{\Gamma,Z}$ for $t \in [0, T^*(u_0))$.

Acknowledgements

This work was supported by CONICET–Argentina.

References

- [1] L. ANGIULI, A. LUNARDI, Semilinear nonautonomous parabolic equations with unbounded coefficients in the linear part, *Nonlinear Anal.* 125(2015), 468–497. https://doi.org/10.1016/j.na.2015.05.034; MR3373596; Zbl 1332.35179
- [2] W. ARENDT, C. J. K. BATTY, M. HIEBER, F. NEUBRANDER, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, Vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011. https://doi.org/10.1007/978-3-0348-0087-7; MR2798103; Zbl 1226.34002
- [3] Z. ASGARI, M. GHAEMI, M. G. MAHJANI, Pattern formation of the FitzHugh–Nagumo model: cellular automata approach, *Iran. J. Chem. Chem. Eng.* **30**(2011), No. 1, 135–142.
- [4] B. BAEUMER, M. KOVÁCS, M. M. MEERSCHAERT, Fractional reproduction-dispersal equations and heavy tail dispersal kernels, *Bull. Math. Biol.* 69(2007), No. 7, 2281–2297. https://doi.org/10.1007/s11538-007-9220-2; MR2341872; Zbl 1296.92195
- [5] H. BAILUNG, S. K. SHARMA, Y. NAKAMURA, Observation of Peregrine solitons in a multicomponent plasma with negative ions, *Bull. Math. Biol.* 107(2011), No. 25, 255005. https://doi.org/10.1103/physrevlett.107.255005

- [6] A. T. BESTEIRO, D. F. RIAL, Global existence for vector valued fractional reaction–diffusion equations, *arXiv preprint*, 2018. https://arxiv.org/abs/1805.09985
- [7] J. P. BORGNA, M. DE LEO, D. RIAL, C. SÁNCHEZ DE LA VEGA, General splitting methods for abstract semilinear evolution equations, *Commun. Math. Sci.* 13(2015), No. 1, 83–101. https://doi.org/10.4310/CMS.2015.v13.n1.a4; MR3238139; Zbl 1311.65106
- [8] C. BUCUR, E. VALDINOCI, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, Vol. 20, Springer, 2016. https://doi.org/10.1007/ 978-3-319-28739-3
- [9] A. BUENO-OROVIO, D. KAY, K. BURRAGE, Fourier spectral methods for fractional-in-space reaction-diffusion equations, *BIT Numer. Math.* 54(2014), No. 4, 937–954. https://doi. org/10.1007/s10543-014-0484-2; MR3292533; Zbl 1306.65265
- [10] K. BURRAGE, N. HALE, D. KAY, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations, SIAM J. Sci. Comput. 34(2012), No. 4, A2145–A2172. https: //doi.org/10.1137/110847007; MR2970400; Zbl 1253.65146
- [11] T. CAZENAVE, A. HARAUX, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications, Vol. 13, The Clarendon Press, Oxford University Press, New York, 1998. MR1691574
- [12] A. CHABCHOUB, N. P. HOFFMANN, N. AKHMEDIEV, Rogue wave observation in a water wave tank, *Phys. Rev. Lett.* **106**(2011), No. 20, 204502. https://doi.org/10.1103/ PhysRevLett.106.204502
- [13] M. DE LEO, D. RIAL, C. SÁNCHEZ DE LA VEGA, High-order time-splitting methods for irreversible equations, IMA J. Numer. Anal. 36(2016), No. 4, 1842–1866. https://doi.org/ 10.1093/imanum/drv058; MR3556406; Zbl 06943761
- [14] E. DI NEZZA, G. PALATUCCI, E. VALDINOCI, Hitchhiker's guide to the fractional Sobolev spaces, *Bull. Sci. Math.* **136**(2012), No. 5, 521–573. https://doi.org/10.1016/j.bulsci. 2011.12.004; MR2944369; Zbl 1252.46023
- [15] K. J. ENGEL, R. NAGEL, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, Vol. 194, Springer-Verlag, New York, 2000. https://doi.org/10. 1007/b97696; MR1721989
- [16] K. HAMMANI, B. KIBLER, C. FINOT, P. MORIN, J. FATOME, J. M. DUDLEY, G. MILLOT, Peregrine soliton generation and breakup in standard telecommunications fiber, *Optics Letters* 36(2011), No. 2, 112–114. https://doi.org/10.1364/ol.36.000112
- [17] B. KIBLER, J. FATOME, C. FINOT, G. MILLOT, F. DIAS, G. GENTY, N. AKHMEDIEV, J. M. DUDLEY, The Peregrine soliton in nonlinear fibre optics, *Nature Physics* 6(2010), No. 10, 790–795. https://doi.org/10.1038/nphys1740
- [18] M. KWAŚNICKI, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. 20(2017), No. 1, 7–51. https://doi.org/10.1515/fca-2017-0002; MR3613319; Zbl 1375.47038

- [19] N. S. LANDKOF, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. https: //doi.org/10.1007/978-3-642-65183-0; MR0350027
- [20] A. LISCHKE, G. PANG, M. GULIAN, F. SONG, C. GLUSA, X. ZHENG, Z. MAO, W. CAI, M. MEERSCHAERT, M. AINSWORTH, G. KARNIADAKIS, What is the fractional Laplacian?, arXiv preprint, 2018. https://arxiv.org/abs/1801.09767
- [21] J. T. MACHADO, V. KIRYAKOVA, F. MAINARDI, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16(2011), No. 3, 1140–1153. https://doi.org/10.1016/ j.cnsns.2010.05.027; MR2736622; Zbl 1221.26002
- [22] D. H. PEREGRINE, Water waves, nonlinear Schrödinger equations and their solutions, J. Austral. Math. Soc. Ser. B 25(1983), No. 1, 16–43. https://doi.org/10.1017/ S0334270000003891; MR0702914; Zbl 0526.76018
- [23] C. POZRIKIDIS, The fractional Laplacian, CRC Press, Boca Raton, FL, 2016. https://doi. org/10.1201/b19666
- [24] J. C. ROBINSON, A. RODRÍGUEZ-BERNAL, A. VIDAL-LOPEZ, Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems, J. Differential Equations 238(2007), No. 2, 289–337. https://doi.org/10.1016/j.jde.2007.03.028; MR2341427; Zbl 1137.35009
- [25] K. SATO, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, Vol. 68, Cambridge University Press, Cambridge, 2013. https://doi.org/ 10.2307/3621820; MR3185174
- [26] V. I. SHRIRA, V. V. GEOGJAEV, What makes the Peregrine soliton so special as a prototype of freak waves?, J. Engrg. Math. 67(2010), No. 1–2, 12–22. https://doi.org/10.1007/ s10665-009-9347-2; MR2639426; Zbl 1273.76066
- [27] L. E. SILVESTRE, *Regularity of the obstacle problem for a fractional power of the Laplace operator*, PhD thesis, The University of Texas at Austin, 2005.