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1 Introduction

A common problem in the study of dynamical systems is to decide whether two different
systems have a similar behavior [12]. In some cases, solving the problem is easy. For instance,
let F0(x) := f (rx) and F1(x) := r f (x), where r ∈ (0, 1) and f : (0,+∞) → (0,+∞) is a contin-
uous map. Since F1 = ψ ◦ F0 ◦ ψ−1(x) with ψ(x) = rx, the maps F0 and F1 are topologically
conjugated and, therefore, the difference equations

xt+1 = F0(xt), t = 0, 1, 2, . . . , (1.1)

and

xt+1 = F1(xt), t = 0, 1, 2, . . . , (1.2)

are equivalent from a dynamical point of view.
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In other situations, the solution is much harder. Here, we consider a problem proposed by
Cid, Liz and Hilker in [8, Conjecture 3.5]. They conjectured that if equation (1.1) has a locally
asymptotically stable (L.A.S.) equilibrium, then the difference equation

xt+1 = (1− θ)F0(xt) + θF1(xt), t = 0, 1, 2, . . . , (1.3)

also has a locally asymptotically stable equilibrium for each θ ∈ [0, 1], provided that f is
a compensatory population map [7]. In this paper, we show that this conjecture is true for a
broad family of population maps. Indeed, for all maps in that family, we prove that the
equilibrium of (1.3) is not only L.A.S. but globally asymptotically stable (G.A.S.). In other
words, we provide sufficient conditions for (1.3) to inherit the global asymptotic behavior of
(1.1) independently of the value of θ ∈ [0, 1].

Equation (1.3) arises when the effect of harvest timing on population dynamics is consid-
ered. Together with many other factors, harvest time conditions the persistence of exploited
populations, especially for seasonally reproducing species [6, 19, 28, 31], which on the other
hand are particularly suitable to be modeled by discrete difference equations [20]. A key
question in management programmes is to ensure the sustainability of the tapped resources,
thus the issue is generating an increasing interest. However, most previous studies have fo-
cused on population size and few have addressed population stability. A model proposed in
[32] and based on constant effort harvesting—also known as proportional harvesting—allows
for the consideration of any intervention moment during the period between two consec-
utive breeding seasons, a period that from now on we will call the harvesting season for
the sake of simplicity. For this model, two topologically conjugated systems are obtained
when the removal of individuals takes place at the beginning or at the end of the harvest-
ing season—namely difference equations (1.1) and (1.2). For these two conjugated systems,
harvesting with a certain effort—namely the value of r—can create an asymptotically sta-
ble positive equilibrium. When individuals are removed at an intermediate moment during
the harvesting season, the dynamics of the population follow a convex combination of these
limit cases—namely (1.3). In this framework, Conjecture 3.5 in [8] has a clear meaning with
important practical consequences: delaying harvest could not destabilize populations with
compensatory dynamics.

Previous works have addressed the problem considered here. Cid et al. proved in [8] that
the local stability of the positive equilibrium is not affected by the time of intervention for
populations governed by the Ricker model [30]. They also obtained a sharp global stability
result for the quadratic map [25] and the Beverton–Holt model [5]. Global stability is always
desirable as it allows to predict the fate of populations with independence of their initial size.
Yet, proving it is in general a difficult task, this being reflected in the fact that many different
schemes have been used in the literature for this purpose. In [14, 15], the authors showed
that harvest time does not affect the global stability in the Ricker case by using well-known
tools, namely results independently proved by Allwright [2] and Singer [34] for unimodal
maps with negative Schwarzian derivative and a sufficient condition for global stability in
[35, Corollary 9.9].

Little is known about the effect of the moment of intervention on the stability of popula-
tions governed by equations different from the Ricker model, the Beverton–Holt model or the
quadratic map (although see [14, Proposition 2], where it was proved that the moment of in-
tervention does not affect the stability when the harvesting effort is high enough). To reduce
this gap, we introduce an innovative approach that is especially useful to prove the global
stability of a broad family of population models, namely those encompassed in the so called
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generalized α-Ricker model [24]. Among others, the Bellows, the Maynard Smith–Slatkin and
the discretized version of the Richards models are covered by our analysis [4, 26, 29]. Interest-
ingly, these three models can be seen, respectively, as generalizations of the already studied
Ricker, Beverton–Holt and quadratic maps where the term related to the density dependence
includes a new exponent parameter α. In the proposed new method, the focus is on α: under
certain conditions, we provide sharp results of both local and global stability of the positive
equilibrium of the system depending on the value of α. In particular, these results can be
considered as the proof, for a wide range of population models, of [8, Conjecture 3.5]. It is
important to stress that this does not prove the aforementioned conjecture in general, which
is impossible since it is false [14], but supports its validity when restricted to meaningful
population maps used in population dynamics.

The proposed new method can be applied whenever the per capita production function g
has a strictly negative derivative. The domain (0, ρ) of g can be bounded or unbounded. All
bounded cases can be easily reduced to the case ρ = 1. The range (g(ρ), g(0)) can also be
bounded or unbounded, provided that 0 ≤ g(ρ) < 1 < g(0) ≤ +∞.

The applications that we present in this paper focus on the cases g(0) < +∞ and g(ρ) = 0.
In particular, our examples deal with the following models:

• The Bellows model, which includes the Ricker model as a particular case (Subsection 4.1).

• The discretization of the Richards model, which includes the quadratic model as a partic-
ular case (Subsection 4.2).

• The Maynard Smith–Slatkin model, which includes the Beverton–Holt model as a particu-
lar case (Subsection 4.3).

• The Thieme model, which includes the Hassell model as a particular case (Subsection 4.4).

The paper is organized as follows. Section 2 describes the harvesting population model
that motivates our study and lists the families of per capita production functions that we will
consider in Section 4. Section 3 states and proves the main results. Section 4 is divided in
several subsections, each of them consisting in an example of the applicability of the main
results. Finally, Section 5 focuses on the “L.A.S. implies G.A.S.” and the “stability implies
G.A.S” properties.

2 Model

2.1 Per capita production functions

First-order difference equations are commonly used to describe the population dynamics of
species reproducing in a short period of the year. Usually, these equations take the general
form

xt+1 = xt g(xt), t = 0, 1, 2, . . . , (2.1)

where xt corresponds to the population size at generation t and map g to the per capita
production function, which naturally has to be assumed as non-negative. In addition, g is
frequently assumed to be strictly decreasing, because of the negative effect of the intraspecific
competition in the population size, and when that condition holds the population is said
compensatory [7, 20]. Theoretical ecologists have developed several concrete families of per
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capita production functions. These families depend on one or several parameters, which are
essential to fit the functions to the experimental data.

Our results cover some of the most relevant families of compensatory population maps,
which, as it was pointed out in [24], can be described in a unified way using the map

g : {x ∈ R++ : 1 + pxα > 0} → R++

defined by

g(x) = lim
q↓p

κ

(1 + qxα)1/q , (2.2)

where α, κ ∈ R++ and p ∈ R \ {−∞}, with R++ denoting the set of positive real numbers
and R := [−∞,+∞] the extended real line.

The following models are obtained for different values of the parameters:

[M1] For p = 1 and α = 1, the Beverton–Holt model [5], in which g(x) = κ
1+x .

[M2] For p = −1 and α = 1, the quadratic model [25], in which g(x) = κ(1− x) and where
κ < 4 for (2.1) to be well-defined.

[M3] For p = 0 and α = 1, the Ricker model [30], in which g(x) = κe−x.

Models [M1–M3] are compensatory. Nevertheless, [M2–M3] are always overcompensatory
[7,9] (map xg(x) is unimodal) and can have very rich and complicate dynamics, whereas [M1]
is never overcompensatory (the map xg(x) is increasing) and has pretty simple dynamics: all
solutions monotonically tend to the same equilibrium which, consequently, is G.A.S.

Map (2.2) also includes models that are overcompensatory or not depending on the values
of the parameters:

[M4] For p = 1, the Maynard Smith–Slatkin model [26], in which g(x) = κ
1+xα .

[M5] For α = 1 and p > 0, the Hassell model [17], in which g(x) = κ
(1+px)1/p .

[M6] For p > 0, the Thieme model [35], in which g(x) = κ
(1+pxα)1/p .

Obviously, [M4–M6] include [M1] as a special case. Similarly, the last two models that we
will mention can be considered as generalizations of [M2] and [M3], respectively:

[M7] For p = −1, the discretization of the Richards model [29], in which g(x) = κ(1− xα).
Since xg(x) attains its maximum value at x = (1/(1 + α))1/α, the inequality ακ <

(1 + α)
1+α

α must be satisfied for (2.1) to be well-defined.

[M8] For p = 0, the Bellows model [4], in which g(x) = κe−xα
.

Models [M7–M8] generalize [M2–M3] by including a new exponent parameter α, which
determines the severity of the density dependence and makes the models more flexible to
describe datasets [4]. This is the announced exponent parameter playing a central role in our
study.

Before presenting the harvesting model where these population production functions will
be plugged in, it is convenient to make some remarks. First, we point out that the domain
of g is bounded for models [M2] and [M7], whereas it is unbounded for the rest of models.
When the domain of g is bounded, there is a restriction in the parameters involved in the
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map for which (2.1) is well-defined. On the other hand, a suitable rescaling allows to obtain
other frequently used expressions of these eight models depending on an extra parameter, e.g.
g(x) = κ(1− mx) for the quadratic model or g(x) = κe−mx for the Ricker model. This extra
parameter is irrelevant for the dynamics of (2.1).

2.2 Modelling harvest timing

Assume that a population described by (2.1) is harvested at the beginning of the harvesting
season t and a fraction γ ∈ [0, 1) of the population is removed. Then, it is well established
that the population dynamics are given by

xt+1 = (1− γ)xtg((1− γ)xt). (2.3)

When individuals are removed at the end of the harvesting season, the population dynamics
follow

xt+1 = (1− γ)xtg(xt). (2.4)

The above situations represent the two limit cases of our problem. To model the dynamics of
populations harvested at any time during the harvesting season, we consider the framework
introduced by Seno in [32]. Let θ ∈ [0, 1] represent a fixed time of intervention during the
harvesting season, in such a way that θ = 0 corresponds to removing individuals at the
beginning of the season and θ = 1 at the end. Assume that the reproductive success at the
end of the season depends on the amount of energy accumulated during it. Given that the per
capita production function depends on xt before θ and on (1− γ)xt afterwards, Seno assumed
that the population production is proportional to the time period before/after harvesting. This
leads to the convex combination of (2.3) and (2.4) given by

xt+1 = (1− γ)xt[θg(xt) + (1− θ)g((1− γ)xt)]. (2.5)

In particular, substituting θ = 0 in (2.5) yields (2.3), and (2.4) is obtained for θ = 1.
The two maps derived from (2.5) for θ = 0 and θ = 1 are topologically conjugated. Thus,

if the equilibrium for θ = 0 is G.A.S., then the equilibrium for θ = 1 is also G.A.S., and vice
versa. From a practical point of view, this implies that for these two limit cases we can predict
the long-run behavior of the system with independence of the initial condition. In view of
this, it is natural to study to what extent the same is true if individuals are removed at any
intermediate moment during the harvesting season.

Substituting map (2.2) into (2.5), we obtain an intricate model depending on up to five
parameters for which establishing general local or global stability results is a tricky task. For
that purpose, we develop a general method in the following section.

3 Exponent analysis method

Consider the difference equation

xt+1 = xtgs(xt),

with
gs(x) = c h(xα) + (b− c) h(sxα),
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where b, s, α ∈ R++ and c ∈ R+ := [0,+∞) are such that c < b; s ≤ 1; and h : (0, ρ)→ (ν, µ) ⊂
R++ is a decreasing diffeomorphism with ρ, µ ∈ {1,+∞} and νb < 1 < µb.

Notice that the domain of h can be the open bounded interval (0, 1) or the open unbounded
interval (0,+∞), covering all the models described in the previous section. In addition, the
image of h can be bounded or unbounded, although the applications presented in this paper
are restricted to the bounded case.

For ρ = 1, it is not obvious that the difference equation xt+1 = xtgs(xt) is well-defined, i.e.
xgs(x) ∈ (0, ρ) for x ∈ (0, ρ). Next, we study when the difference equation xt+1 = xtgs(xt)

is well-defined and has a unique equilibrium. We establish some notation first. Being the
function

x 7→ gs

(
x1/α

)
= c h(x) + (b− c) h(sx)

a diffeomorphism from (0, ρ) to (νsb, µb), where

νs := lim
x→ρ

gs(x)/b =
cν + (b− c)h(sν)

b
≥ ν, (3.1)

we denote by js its inverse diffeomorphism, i.e., the function js : (νsb, µb)→ (0, ρ) satisfying

c h(js(z)) + (b− c) h(sjs(z)) = z (3.2)

for all z ∈ (νsb, µb). Obviously, when ρ = +∞, one has νs = ν for s ∈ (0, 1].

Lemma 3.1. Assume b, s, α ∈ R++ and c ∈ R+ are such that c < b; s ≤ 1; and h : (0, ρ)→ (ν, µ) ⊂
R++ is a decreasing diffeomorphism with ρ, µ ∈ {1,+∞} and νb < 1 < µb. In addition, let

s∗ := inf{s ∈ (0, 1] : νs < 1/b}, (3.3)

where νs is given by (3.1). Then, the map xgs(x) has a unique fixed point in (0, ρ) if and only if
s > s∗. Moreover, this fixed point is (js(1))

1/α.

Proof. Clearly, x ∈ (0, ρ) is a fixed point of xgs(x) if and only if gs(x) = 1, and in such case,
x = (js(1))

1/α.
Next, notice that ν0 := cν+(b−c)µ

b ≥ νŝ ≥ νs ≥ ν1 = ν, for 0 < ŝ < s < 1, and that νs depends
continuously on s. Since gs maps (0, ρ) onto (νsb, µb) and νb < 1 < µb holds, we have that the
equation gs(x) = 1, for x ∈ (0, ρ), has solution if and only if s > s∗. We have already stressed
that νs = ν, for ρ = +∞. Hence, we have s∗ = 0 for ρ = +∞.

In the conditions of Lemma 3.1, for each s ∈ (0, 1] we define the function

τs :
(

1
µb , 1

νsb

)
→ R by τs(z) :=

ln
(

js
( 1

z

))
ln z

. (3.4)

Now, we study under which conditions the difference equation xt+1 = xtgs (xt) is well-
defined.

Lemma 3.2. Assume that the conditions of Lemma 3.1 hold with s ∈ (s∗, 1]. Then, zgs(z) ∈ (0, ρ)

for all z ∈ (0, ρ) if and only if α < αs with

αs =

{
+∞, ρ = +∞,

minz∈(1/µb,1) τs(z), ρ = 1.
(3.5)

Moreover, if the equation xt+1 = xtgs(xt) is well-defined for s = 1, then it is also well-defined for
s ∈ (s∗, 1].
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Proof. We consider separately the cases ρ = +∞ and ρ = 1. The case ρ = +∞ is trivial. For
ρ = 1, we have

z gs(z) ∈ (0, 1) for z ∈ (0, 1) ⇐⇒ gs(z) <
1
z

for z ∈ (0, 1).

The latter inequality always holds if z ≤ 1
µb , because gs ((0, 1)) = (νsb, µb). Hence,

gs(z) <
1
z

for z ∈ (0, 1) ⇐⇒ gs(z) <
1
z

for z ∈
(

1
µb , 1

)
⇐⇒ zα > js

( 1
z

)
for z ∈

(
1

µb , 1
)

⇐⇒ α <
ln
(

js
( 1

z

))
ln z

= τs(z) for z ∈
(

1
µb , 1

)
.

Since ρ = 1, we have that τs(z) > 0 for z ∈
(

1
µb , 1

)
and

lim
z→1/µb

τs(z) = +∞ and lim
z→1−

τs(z) = +∞, (3.6)

which finishes the proof of the first affirmation. For the second one, notice that αs decreases
as we increase s, because js decreases with s. Therefore, α < α1 guarantees α < αs for
s ∈ (s∗, 1].

Now, in the conditions of Lemma 3.1, for each s ∈ (s∗, 1], we write

bs := min{µb,
1

νsb
}, (3.7)

and define the function σs :
(

1
bs

, bs

)
⊂
(

1
µb , 1

νsb

)
→ R by

σs(z) :=


τs(z) + τs(

1
z
), z 6= 1,

−2j′s(1)
js(1)

, z = 1.
(3.8)

Lemma 3.3. The function σs given in (3.8) is continuous and positive. Moreover, when ρ = 1, it
satisfies σs(z) < τs(z) for z ∈

(
1
bs

, 1
)

.

Proof. A direct application of L’Hôpital’s rule shows that σs is a continuous function:

lim
z→1

σs(z) = lim
z→1

ln (js (1/z))− ln (js(z))
ln z

= lim
u→0

ln(js(e−u))− ln(js(eu))

u
=
−2j′s(1)

js(1)
= σs(1).

On the other hand, to see that σs takes values on R++ note that z 7→ ln(js(z)) is a decreasing
function and that js is a diffeomorphism, so j′s(1) < 0.

Finally, for ρ = 1, one has

τs(z) =
ln(js(1/z))

ln z
> 0 and τs(1/z) =

ln(js(z))
− ln z

< 0,

for z ∈
( 1

bs
, 1
)
. Thus, σs(z) < τs(z) for z ∈

( 1
bs

, 1
)
.
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The function σs, given in (3.8), is related to the fixed points of the map fs ◦ fs with fs(x) =
xgs(x), as we will see next. Assuming α < αs, for the map fs ◦ fs to be well-defined, and
rearranging for α in the fixed points equation we have (see Lemma 3.1)

gs(x)gs(xgs(x)) = 1 ⇐⇒ j−1
s (y) j−1

s

(
y
(

j−1
s (y)

)α)
= 1 ; y = xα (3.9)

⇐⇒ zj−1
s (js(z)zα) = 1 ; z = j−1

s (xα) (3.10)

⇐⇒ js(z)zα = js (1/z) ; z = j−1
s (xα) (3.11)

⇐⇒ α = σs(z) with z = j−1
s (xα) , or z = 1. (3.12)

In other words, the difference equation xt+1 = xtgs(xt) has a nontrivial period-2 orbit if
and only if there exists z ∈ (1/bs, bs) \ {1} and α < αs such that σs(z) = α. Consequently,
considering σs for the study of the global stability of the equilibrium of xt+1 = xtgs(xt) is
natural since, by the main theorem in [10], the absence of nontrivial period-2 orbits for xt+1 =

xtgs(xt) is equivalent to the global asymptotic stability of this equilibrium. More specifically,
we will use the following result:

Lemma 3.4. Let −∞ ≤ a1 < a2 ≤ ∞, I = (a1, a2), f : I → I a continuous function and x∞ ∈ I
such that ( f ◦ f )(x) 6= x for all x ∈ I \ {x∞}. Then, x∞ is a stable equilibrium for the map f ◦ f if
and only if x∞ is a G.A.S. equilibrium for the map f .

Proof. Define f (1) := f , f (n) := f ◦ f (n−1) and apply the Sharkovsky Forcing Theorem [33] to
see that f (n)(x) 6= x for all x ∈ I \ {x∞}, n ≥ 1. If the continuous function q(x) = f (n)(x)− x
were negative in (a1, x∞), then x∞ would not be stable for the map f (2), since xj = f (2nj)(x0)

would be a decreasing sequence, for all x0 ∈ (a1, x∞). Applying the same argument for
the interval (x∞, a2), we conclude that ( f (n)(x)− x)(x− x∞)< 0 for all n ≥ 1, x ∈ I \ {x∞}.
In particular, replacing x with f (m)(x), one has ( f (n+m)(x) − f (m)(x))( f (m)(x) − x∞) < 0
for all n, m ≥ 1, x ∈ I \ {x∞}. Therefore, the subsequence of

(
f (n)(x)

)
n formed by the

terms smaller (respectively, greater) than the x∞ is increasing (respectively, decreasing). Then,
limn→∞ f (n)(x) = x∞, for all x ∈ I. The converse is obvious.

Remark 3.5. We are considering per capita production functions from (0, ρ) onto (νsb, µb) ⊂
(νb, µb), given by

gs(x) = c h(xα) + (b− c) h(sxα),

where s and α runs, respectively, through (s∗, 1] and (0, αs), these being the largest intervals
within which the equation xt+1 = xtgs(xt) is well-defined and has an equilibrium (see (3.1),
(3.3) and (3.5)).

Probably, the most relevant applications arise for the case in which the domain is un-
bounded (i.e., ρ = +∞). In such a particular case, s∗ = 0, νs = ν and αs = +∞, for all
s ∈ [0, 1]. Therefore, when ρ = +∞, the equation xt+1 = xtgs(xt) is well-defined and has an
equilibrium for all s ∈ [0, 1] and α > 0.

Moreover, we point out that the following theorem (which is the main result of this paper)
can be applied under very general conditions. In particular, it holds when the per capita
production function has unbounded range.

In what follows, ρ, µ, ν, b and c will be considered as constants, while s and α will be
mostly seen as parameters.
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Theorem 3.6. Let µ, ρ ∈ {1,+∞}, 0 < c < b, 0 ≤ νb < 1 < µb and h : (0, ρ) → (ν, µ) be
a decreasing diffeomorphism. Let s∗ be given by (3.1)–(3.3), αs given by (3.4)–(3.5) and consider
the families of functions {js}s∗<s≤1 and {σs}s∗<s≤1 defined by (3.2) and (3.8), respectively. For each
s ∈ (s∗, 1] and α ∈ (0, αs) also consider the discrete equation

xt+1 = xt (c h (xα
t ) + (b− c)h (sxα

t )) , x0 ∈ (0, ρ). (3.13)

(A) Then, (3.13) is well-defined, it has a unique equilibrium and

(i) The equilibrium of (3.13) is locally asymptotically stable (L.A.S.) when α < σs(1) and it is
unstable for α > σs(1).

(ii) The equilibrium of (3.13) is globally asymptotically stable (G.A.S.) if and only if α < σs(z)
for all z ∈ (1, bs) (see (3.1) and (3.7)).

(B) Additionally, assume that h satisfies

x 7→ h′(x)/h′(sx) is nonincreasing for each s ∈ (s∗, 1). (H1)

If (3.13) is well-defined and its equilibrium is G.A.S. for s = 1, then (3.13) is well-defined and
its equilibrium is G.A.S., for the same parameters, but s ∈ (s∗, 1].

(C) Finally, assume that h satisfies

x 7→ h′(x)/h′(sx) is decreasing for each s ∈ (s∗, 1). (H2)

If (3.13) is well-defined and its equilibrium is L.A.S. for s = 1, then (3.13) is well-defined and
its equilibrium is L.A.S., for the same parameters, but s ∈ (s∗, 1].

Proof. (A). By Lemmas 3.1 and 3.2, equation (3.13) is well-defined and has a unique equilib-
rium at x∞ = (js(1))

1/α. To prove (i), we compute the derivative at the equilibrium. Since

fs(x) = x (c h(xα) + (b− c) h(sxα)) = xj−1
s (xα) ,

we obtain

f ′s(x) = j−1
s (xα) + x

(
j−1
s

)′
(xα) αxα−1.

The evaluation of this expression at x∞ = (js(1))
1/α yields

f ′s (x∞) = 1 + αjs(1)
(

j−1
s

)′
(js(1)) = 1 + α

js(1)
j′s (1)

= 1− 2α

σs(1)
,

and then, since σs(1) > 0 holds by Lemma 3.3,

−1 < f ′s (x∞) < 1 ⇐⇒ α < σs(1).

Similarly, if 0 < σs(1) < α, then f ′(x∞) < −1, so (3.13) is unstable.
By the symmetry of σs and applying an analogous argument as the one presented in (3.9)–

(3.12) we obtain that

σs(z) ≷ α ∀z ∈ (1, bs) ⇐⇒ (( fs ◦ fs)(x)− x)(x− x∞) ≶ 0 ∀x ∈ (0, ρ) \ {x∞}. (3.14)

To prove (ii), in view of (i) above, (3.9)–(3.12) and Lemma 3.4, just consider the following four
scenarios:
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• If α < σs(z) for all z ∈ [1, bs), then, by (3.14), ( fs ◦ fs)(x) 6= x for all x ∈ (0, ρ) \ {x∞} and
x∞ is L.A.S. Then, x∞ is G.A.S.

• If α = σs(1) < σs(z) for all z ∈ (1, bs), then, by (3.14), (( fs ◦ fs)(x)− x)(x− x∞) < 0 for
all x ∈ (0, ρ) \ {x∞} and ( fs ◦ fs)′(x∞) = 1. The equilibrium x∞ is L.A.S. for fs ◦ fs. Then,
x∞ is G.A.S. for fs.

• If α > σs(z) for all z ∈ (1, bs), then, by (3.14), ( fs ◦ fs)(x) < x for all x ∈ (0, x∞).
Therefore, the equilibrium x∞ is unstable.

• In any other case, the equation xt+1 = fs(xt) has nonconstant periodic solutions. There-
fore, the equilibrium x∞ is not G.A.S.

(B). We start by verifying that the function s 7→ σs(z) is nonincreasing for each z ∈
(1/bs, bs). Recall that νs is nonincreasing in s (see (3.1)), so (1/bŝ, bŝ) ⊂ (1/bs, bs) for any
0 < ŝ < s < 1; therefore, σs(z) is well-defined if σŝ(z) is. By differentiating with respect to s in

z = c h(js(z)) + (b− c) h(sjs(z)),

we obtain

0 = c h′ (js(z))
∂js(z)

∂s
+ (b− c) h′ (sjs(z))

(
js(z) + s

∂js(z)
∂s

)
,

which implies

∂ ln (js(z))
∂s

=
∂js(z)

∂s
js(z)

=
(c− b) h′ (sjs(z))

c h′ (js(z)) + (b− c) s h′ (sjs(z))
=

(c− b)

c
h′ (js(z))
h′ (sjs(z))

+ (b− c)s
.

Since condition (H1) holds and js is a decreasing diffeomorphism, we have that the function
z 7→ ∂(ln js(z))/∂s is non-decreasing in (1/bs, bs) for each s ∈ (s∗, 1]. Thus,

∂

∂s
σs (z) =

∂

∂s

(
τs(z) + τs(1/z)

ln z

)
=

∂
∂s ln js(1/z)− ∂

∂s ln js(z)
ln z

≤ 0

for all z ∈ (1/bs, bs) \ {1}. Therefore, the function s 7→ σs(z) is nonincreasing for each z ∈
(1/bs, bs).

Now, if (3.13) is well-defined for s = 1, by Lemma 3.2, we know that (3.13) is well-defined
for s ∈ (s∗, 1), and, if its equilibrium is G.A.S. for s = 1, (A)-(ii) and the fact that σs(1/z) =

σs(z) yield

α < σ1(z) ≤ σs(z) for all z ∈ (1/bs, bs) \ {1} and s ∈ (s∗, 1].

Therefore, (3.13) is well-defined and its equilibrium is G.A.S. for all s ∈ (s∗, 1].
(C). Following the same reasoning as in the previous case but using (H2) instead of (H1),

it is easy to see that the function s 7→ σs(z) is decreasing for each z ∈ (1/bs, bs). As a
consequence, if the equilibrium of (3.13) is L.A.S. for s = 1, the application of (A)-(i) yields

α ≤ σ1(1) < σs(1), for all s ∈ (s∗, 1],

and (3.13) is well-defined and its equilibrium is L.A.S. for all s ∈ (s∗, 1].
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Remark 3.7. Note that σs ◦ exp is an even function, which makes it more suitable for graphical
representations than σs itself.

Theorem 3.6 reduces the study of the local or global stability to the study of the relative
position of the graph of σs with respecto to α. Figure 3.1 illustrates this. For a fixed s, the
relative position of minz∈(1,bs) σs(z), σs(1) and α determines the local and global stability of
the equilibrium of (3.13). Suppose that the graph of σs corresponds to the black curve in
Figure 3.1-A. From (i) and (ii) in Theorem 3.6, we obtain that the equilibrium of (3.13) is
unstable for α > σs(1), L.A.S. but not G.A.S. for minz∈(1,bs) σs(z) < α < σs(1), and G.A.S. for
α < minz∈(1,bs) σs(z). Figure 3.1-B illustrates the special case when the function σs attains a
strict global minimum at z = 1. In such a situation, the range of values of α for which the
equilibrium is L.A.S., thanks to (i) in Theorem 3.6, is contained in the range of values of α for
which it is G.A.S., thanks to (ii) in Theorem 3.6. Hence, in this case, Theorem 3.6 completely
characterizes the stability of the equilibrium of (3.13): it is G.A.S. for α ≤ σs(1) and unstable
for α > σs(1).
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Figure 3.1: In all panels, the black curve represents the graph of σ1 ◦ exp. A: For
α > σs(1) the equilibrium of (3.13) is unstable, for minz∈(1,bs) σs(z) < α < σs(1)
it is L.A.S. but not G.A.S., and for α < minz∈(1,bs) σs(z) it is G.A.S. B: Since σs

attains at z = 1 a strict global minimum, the equilibrium of (3.13) is G.A.S. for
α ≤ σs(1). C: The assumption that σ1 attains a strict global minimum at z = 1
and condition (H1) are sufficient to guarantee that the graphs of the family of
functions {σs}0<s≤1 are above the graph of σ1 and, consequently, the equilibrium
of (3.13) is G.A.S. for each s ∈ (0, 1] and α ≤ σ1(1).

Figure 3.1-C deals with the last part of Theorem 3.6. Assume that σ1(1) is a global mini-
mum of σ1(z) and that condition (H1) holds. Then, all the graphs of the family of functions
{σs}0<s≤1 are above the graph of σ1(z) and, therefore, the equilibrium of (3.13) is G.A.S. for
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each α ≤ σ1(1) and 0 < s ≤ 1.
Apart from condition (H1), Theorem 3.6-(B) assumes that (3.13) is well-defined and that

its equilibrium is G.A.S. for s = 1. But we have already mentioned that guaranteeing the
G.A.S. of an equilibrium is a difficult task. Nevertheless, when the logarithmically scaled
diffeomorphism φs(u) := ln (js (eu)) is C3, we can derive a sufficient condition for σs(1) to be
the strict global minimum of σs(z).

Lemma 3.8. If φs(u) := ln (js (eu)) is three times continuously differentiable with φ′′′s (u) < 0 for all
u ∈ (− ln bs, ln bs), then σs(z) attains at z = 1 its strict global minimum value.

Proof. It is routine to check that[
dj (σs (eu) u− σs (1) u)

duj

]
u=0

=

[
dj (φs(−u)− φs(u)− σs (1) u)

duj

]
u=0

= 0

for j = 0, 1, 2, and that

d3 (σs (eu) u− σs (1) u)
du3 =

d3 (φs(−u)− φs(u)− σs (1) u)
du3 = −φ′′′s (−u)− φ′′′s (u) > 0

for u ∈ (− ln bs, ln bs). Therefore, σs (eu) u− σs(1)u > 0 for u ∈ (0, ln bs), i.e., σs(z) > σs(1) for
all z ∈

(
1
bs

, bs

)
\ {1}.

4 Application to some population models

The next result characterizes the elements of the family of per capita production functions
(2.2) for which condition (H1) in Theorem 3.6 holds.

Lemma 4.1. For any p ∈ R, the function h : {x ∈ R+ : 1 + px > 0} → (0, 1) defined by

h(x) = lim
q↓p

1

(1 + qx)1/q

is a decreasing diffeomorphism. Moreover, h satisfies (H1) for each s ∈ (0, 1) if and only if p ≥ −1.

Proof. Assume p 6= 0. Differentiating, we obtain that

h′(x) = − (1 + px)−(p+1)/p < 0

for any x ∈ R+ such that 1 + px > 0 and, consequently, the first statement is true.
Moreover,

h′(x)
h′(sx)

=
− (1 + px)−(p+1)/p

− (1 + psx)−(p+1)/p =

(
1 + psx
1 + px

)(p+1)/p

=

(
s +

1− s
1 + px

)(p+1)/p

and

d
dx

(
h′(x)
h′(sx)

)
= −(p + 1)

(
s +

1− s
1 + px

)1/p (1− s)
(1 + px)2 ,

which is non-positive for each s ∈ (0, 1) if and only if p ∈ [−1,+∞) \ {0}.
Finally, the result is straightforward for p = 0 since h(x) = e−x and h′(x)

h′(sx) = e−(1−s)x.
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The following subsections deal with the study of the harvesting model (2.5) for the per
capita production functions in Subsection 2.1. We use a similar procedure for all of them,
based on the following five steps:

1. First, we rewrite the difference equation that we want to study, which will depend on
certain original parameters, as (3.13) with parameters b, c, s, α, ν, µ and ρ.

2. We check that h satisfies condition (H1), thanks to Lemma 4.1.

3. If necessary, we check that (3.13) is well-defined for s = 1. Next, we invoke Lemma 3.8 to
guarantee that the rewritten difference equation, with s = 1, has an equilibrium which
is G.A.S.

4. Then, we use statement (B) in Theorem 3.6 to conclude the global stability result for
s ∈ (s∗, 1].

5. Finally, we interpret the result in terms of the original parameters.

4.1 Bellows model

The per capita production function of the Bellows model is given by g(x) = κe−xα
, with

κ, α > 0. The Seno model (2.5) is in this case

xt+1 = κθ(1− γ)xte−xα
t + κ(1− θ)(1− γ)xte−(1−γ)αxα

t , x0 > 0, (4.1)

where θ ∈ [0, 1] and γ ∈ [0, 1).
In order to apply the results in Section 3, we set b = κ(1 − γ) > 1, c = κ(1 − γ)θ,

s = (1− γ)α, ρ = +∞, ν = 0, µ = 1, and h(x) = e−x, which is a decreasing diffeomorphism
from (0,+∞) to (0, 1) satisfying condition (H1), thanks to Lemma 4.1. Notice that (3.13) with
s = 1 is equivalent to (4.1) with θ = 1. In this case, bs = b for each s ∈ (0, 1] and j1(z) = ln(b/z)
for z ∈ (0, b), σ1(1) = 2/ln b. Moreover, φ1(u) = ln (ln (be−u)) and φ′′′1 (u) = − 2

(ln(be−u))3 < 0

for u ∈ (− ln b, ln b).
Therefore, a direct application of Theorem 3.6, taking into account that s∗ = 0, νs = ν and

αs = +∞, for all s ∈ [0, 1] when ρ = +∞ (see Remark 3.5), yields the following result:

Proposition 4.2. If κ(1− γ) > 1, then (4.1) has a unique equilibrium. If, in addition, θ = 1, then
the equilibrium of (4.1) at x = (ln(κ(1− γ)))1/α is unstable for α > 2/ ln(κ(1− γ) and G.A.S. for
α ≤ 2/ ln(κ(1− γ)). Furthermore, for θ < 1 and α ≤ 2/ ln(κ(1− γ)), the equilibrium is also G.A.S.

Proposition 4.2 characterizes the global stability of the equilibrium for the Bellows model
without harvesting. Such a result is new, as far as we know, and is interesting in itself. On
the other hand, Proposition 4.2 confirms that, for the Bellows model, the harvesting effort
necessary for stabilization is less for θ ∈ (0, 1) than for θ = 0 and θ = 1. Since the Bellows
model has the Ricker model as a particular case, Proposition 4.2 generalizes [8, Proposition
3.3] and gives an alternative proof of the main result in [15].

4.2 Discretization of the Richards model

The per capita production function of the discretization of the Richards model is given by
g(x) = κ(1− xα), with κ, α > 0. Hence, the Seno model (2.5) reads

xt+1 = κθ(1− γ)xt(1− xα
t ) + κ(1− θ)(1− γ)xt(1− (1− γ)αxα

t ), x0 ∈ (0, 1), (4.2)



14 D. Franco, J. Perán and J. Segura

where θ ∈ [0, 1] and γ ∈ [0, 1).
In this example, it is natural to assume that (4.2) is well-defined for γ = 0, i.e., that the

population model without harvesting makes sense. As mentioned when we presented this
per capita production function in Subsection 2.1, equation (4.2) is well-defined for γ = 0 if
and only if ακ < (1 + α)

1+α
α .

As in the previous case, we set b = κ(1− γ) > 1, c = κ(1− γ)θ, s = (1− γ)α, ρ = 1, ν = 0,
µ = 1, and h(x) = 1− x. Clearly, the function h(x) is a decreasing diffeomorphism from (0, 1)
to (0, 1) and, by Lemma 4.1, satisfies condition (H1).

We aim to obtain a global stability result for (3.13) with s = 1, which is equivalent to (4.2)
with θ = 1. Note that (3.13) is well-defined for s = 1 because αb ≤ ακ < (1 + α)

1+α
α . We have

j1(z) = 1− z
b for z ∈ (0, b), being σ1(1) = 2

b−1 , φ1(u) = ln
(
1− eu

b

)
and φ′′′1 (u) = − beu(b+eu)

(b−eu)3 < 0.

Then, σ1(z) > 2b
b−1 for z > 1 and the equilibrium of (3.13) is G.A.S. for s = 1 if α ≤ 2b

b−1 , i.e., if
b(α− 2) ≤ α.

In order to use Theorem 3.6, we need to impose s > s∗ = max
{

0, 1− 1
b−c

}
, or what is the

same, νsb = (b− c)(1− s) < 1. But, for the selected values of the parameters, this is always
true because

(b− c)(1− s) = (1− θ)κ(1− γ)(1− (1− γ)α) ≤ κ(1− γ)(1− (1− γ)α) < 1,

where we have used that xt+1 = κxt(1− xα
t ), x0 ∈ (0, 1) is well-defined.

Proposition 4.3. If κ(1− γ) > 1 and ακ < (1 + α)
1+α

α , then (4.2) is well-defined and has a unique
equilibrium. If, in addition, θ = 1, then the equilibrium of (4.2) is unstable for κ(1− γ)(α− 2) > α

and G.A.S. for κ(1 − γ)(α − 2) ≤ α. Furthermore, for θ < 1 and κ(1 − γ)(α − 2) ≤ α, the
equilibrium of (4.2) is also G.A.S.

To our knowledge, Proposition 4.3 gives the first global stability result for the discretization
of the Richards model even in the case without harvesting. Notice that the results in [22]
cannot be used in this case since ρ 6= +∞. In the harvesting framework, Proposition 4.3
includes [8, Proposition 3.6] as a particular result, where the quadratic model was considered.

4.3 Maynard Smith–Slatkin model

If we focus on populations governed by the Maynard Smith–Slatkin model, the per capita

production function is given by g(x) =
κ

1 + xα
, where κ > 0 and α > 0. In that case, model

(2.5) is

xt+1 = κθ(1− γ)
xt

1 + xα
t
+ κ(1− θ)(1− γ)

xt

1 + (1− γ)αxα
t

, x0 > 0, (4.3)

where θ ∈ [0, 1] and γ ∈ [0, 1).
In [8], following [1, Appendix S1] and [23, Theorem 1], it was stated that the equilibrium

of (4.3) for θ = 0 is G.A.S. if 1 < κ(1− γ) ≤ α
α−2 . No result is known about global dynamics

of (4.3), in the general case. However, this model can be easily handled thanks to Theorem 3.6
and Lemma 4.1.

Consider (3.13) with b = κ(1− γ) > 1, c = κ(1− γ)θ, s = (1− γ)α, ρ = +∞, ν = 0, µ = 1
and h(x) = 1/(1 + x), which satisfies condition (H1) from Lemma 4.1. Then, j1(x) = b

x − 1,
σ1(1) = 2b

b−1 , φ1(u) = ln (be−u − 1), and φ′′′1 (u) = − beu(b+eu)

(b−eu)3 < 0.
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Now, observe again that (3.13) with s = 1 corresponds to (4.3) with θ = 1, and apply
Theorem 3.6, taking into account that s∗ = 0, νs = ν and αs = +∞, for all s ∈ [0, 1] when
ρ = +∞ (see Remark 3.5).

Proposition 4.4. If κ(1− γ) > 1, then (4.3) has a unique equilibrium. If, in addition, θ = 1, then
the equilibrium of (4.3) is unstable for κ(1− γ)(α− 2) > α and G.A.S. for κ(1− γ)(α− 2) ≤ α.
Furthermore, for θ < 1 and κ(1− γ)(α− 2) ≤ α, the equilibrium is also G.A.S.

It is interesting to note that considering the exponent parameter α in the quadratic model,
i.e., studying the discretization of the Richards model, unveils the complete parallelism be-
tween the Maynard Smith–Slatkin model and the quadratic model with respect to stability
results.

4.4 Hassell and Thieme models

As already mentioned, topologically conjugated production functions give rise to equivalent
dynamical behaviors. However, when a convex combination of the type of (2.5) is applied
to two topologically conjugated production functions, the transformed systems could exhibit
different dynamical behaviors.

When applying Theorem 3.6, while working in the case s = 1, we can replace our pro-
duction function by a topologically conjugated one, for which calculations are simpler. This
replacement is no longer valid when checking condition (H1).

In this subsection, we put into practice the previous approach to study the two models still
left: Thieme’s and Hassell’s models. Since Thieme’s model has Hassell’s model as a particular
case, we only consider the former. Besides, without loss of generality, we assume the per
capita production function of the Thieme model to be given by

g(x) =
κ

(1 + xα)β
, κ, α, β > 0.

Now, the change of variables yt = x1/β
t shows that the dynamics of the difference equation

xt+1 =
κxt

(1 + xα
t )

β
(4.4)

are identical of those of the equation

yt+1 =
κ1/βyt

1 + yαβ
t

,

whose per capita production function, g(x) =
κ1/β

1 + xαβ
, belongs to the Maynard Smith–Slatkin

family of maps. This provides a straightforward way to characterize the global stability of the
Thieme model.

Proposition 4.5. If κ > 1, then (4.4) has a unique equilibrium. In addition, the equilibrium of (4.4)
is unstable for κ1/β(αβ− 2) > αβ and G.A.S. for κ1/β(αβ− 2) ≤ αβ.

The previous result improves the global stability condition presented in [35] with a simpler
proof than the one used in [22], which relies in calculating the sign of a certain Schwarzian
derivative.
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The Seno model (2.5) for the Thieme production function is

xt+1 =
κθ(1− γ)xt

(1 + xα
t )

β
+

κ(1− θ)(1− γ)xt

(1 + (1− γ)αxα
t )

β
. (4.5)

Again, in order to apply the results in Section 3, we set b = κ(1− γ) > 1, c = κ(1− γ)θ

and h(x) = 1
(1+x)β , which is a decreasing diffeomorphism from (0,+∞) to (0, 1) satisfying

condition (H1), thanks to Lemma 4.1. And we get the following new result about the Thieme
model under harvesting.

Proposition 4.6. If κ(1− γ) > 1, then (4.5) has a unique equilibrium. If, in addition, θ = 1, then the
equilibrium of (4.5) is unstable for [κ(1−γ)]1/β(αβ−2)>αβ and G.A.S. for [κ(1−γ)]1/β(αβ−2)≤αβ.
Furthermore, for θ < 1 and [κ(1− γ)]1/β(αβ− 2) ≤ αβ, the equilibrium is also G.A.S.

Altogether, we have shown that [8, Conjecture 3.5] holds when restricted to the per capita
production functions [M1–M8]. Indeed, we have shown that a stronger result holds since
we are able to guarantee that the equilibrium is G.A.S. for θ ∈ (0, 1). Furthermore, using
part C of Theorem 3.6 we obtain the following general local stability result in the spirit of
[8, Conjecture 3.5].

Corollary 4.7. Assume that g : (0,+∞)→ (0,+∞) satisfies (H2); g′(x)<0 for all x>0; g(0+)>1;
and there exists some d > 0 such that xg(x) is strictly increasing on (0, d) and strictly decreasing on
(d,+∞). Then, if the equilibrium (2.5) with θ = 0 is L.A.S., then the equilibrium of (2.5) is L.A.S. for
all θ ∈ [0, 1].

5 On the “L.A.S. implies G.A.S.” property

Global stability is a desirable property of systems as it allows to predict the fate of orbits with
independence of the initial condition. For many well-known discrete population models, the
local asymptotic stability of the equilibrium implies its global asymptotic stability; e.g., see
[3, 11, 13, 16, 21, 22, 27]. However, determining whether this popular statement in population
dynamics is true when delayed harvesting is exerted on populations governed by any of the
well-known models [M3–M8] is an open problem. Although the property “L.A.S. implies
G.A.S.” has been cited many times, we have not been able to find a definition of it in the
literature, so we provide the following here.

Definition 5.1. Let F0 be a set of maps f : U f ⊂ R+ → U f , each of them having a unique fixed
point x f ∈ U f . Given F ⊂ F0, we say that the family of discrete equations

xt+1 = f (xt), x0 ∈ U f ,

with f ∈ F (or F itself) satisfies the “L.A.S. implies G.A.S.” property when

{ f ∈ F : x f is L.A.S.} = { f ∈ F : x f is G.A.S.}.

Analogously, we say that F satisfies the “stability implies G.A.S.” property when

{ f ∈ F : x f is stable} = { f ∈ F : x f is G.A.S.}.



Global stability via exponent analysis 17

Note that both properties are inherited by subsets. It should also be stressed that a family
F trivially satisfies both properties when x f is G.A.S. for all f ∈ F. Moreover, these properties
lack interests when F is a singleton, F = { f }. We will avoid affirming that such families
satisfy these properties in that case.

A direct application of our main theorem leads to the following results about the “stability
implies G.A.S.” and “L.A.S. implies G.A.S.” properties.

Let F0 be the set of functions f : (0, ρ) → (0, ρ) for which there exist µ, ρ ∈ {1,+∞},
0 < c < b, ν ≥ 0, 0 ≤ s ≤ 1 and a decreasing diffeomorphism h : (0, ρ) → (ν, µ) such that
0 ≤ c ν + (b− c)h (sρ) < 1 < µb and f (x) = x (c h (x) + (b− c)h (sx)).

For each F ⊂ F0 denote by F̂ the family of functions f (x) = xg(xα) where g runs through
all functions satisfying xg(x) ∈ F and α runs through all positive real numbers for which
xg(xα) ∈ F0.

Corollary 5.2. Let F ⊂ F0. The family F̂ satisfies the “stability implies G.A.S” property if and only if
the map σs(z) attains its strict global minimum at z = 1, for each function in F.

Proof. Suppose that there exists a function in F for which the corresponding map σs satis-
fies σs(z0) ≤ σs(1) for some z0 6= 1 in dom σs. On the one hand, if σs(z0) < σs(1), by
considering α ∈ (σs(z0), σs(1)), we find a case for which the equilibrium x∞ is L.A.S., but
not G.A.S. (apply part (A) in Theorem 3.6). On the other hand, if σs(z) ≥ σs(1) for all
z ∈ dom σs, we consider α = σs(1). In this case (see (3.14)), we would have f ′s(x∞) = −1
and (( fs ◦ fs)(x)− x∞)(x− x∞) ≤ 0 for all x ∈ (0, ρ), and thus the equilibrium x∞ is stable.
However, this equilibrium is not G.A.S., because α = σs(z0) (apply part (A) in Theorem 3.6
again). In both cases, the above family of discrete equations does not satisfy the “stability
implies G.A.S.” property.

Conversely, assume that there is a function in F and an admissible value of α > 0 for
which the corresponding equilibrium x∞ is stable, but not G.A.S. By part (A) in Theorem 3.6,
α ≤ σs(1) and there exists z0 ∈ dom σs with α = σs(z0). In this case, the map σs(z) does not
attain its strict global minimum at z = 1.

We consider now F1 to be the set of those functions f ∈ F0 for which s = 1 and h satisfies
condition (H1) and F2 to be the set of those functions f ∈ F0 for which α ≤ σ1(1) and h
satisfies condition (H1).

Corollary 5.3. Let F ⊂ F0 be such that F̂ ∩ F1 satisfies the “L.A.S. implies G.A.S.” property. Then,
x f is G.A.S. for every function f ∈ F̂∩ F2.

The above statement can be reformulated as follows.
Assume that h satisfies (H1). If (3.13) satisfies the “L.A.S. implies G.A.S.” property for s = 1,

then, (3.13) is well-defined and its equilibrium is G.A.S. for s ∈ (s∗, 1] and α ∈ (0, σ1(1)).

Proof. Apply the part (B) in Theorem 3.6 and Corollary 5.2.

Observe that Corollary 5.3 does not mean that (3.13) satisfies the “L.A.S. implies G.A.S.”
property for s ∈ (s∗, 1], α ∈ (0, αs), and h satisfying condition (H1).

Finally, consider the set F3 ⊂ F0 made up of those functions for which the logarithmically
scaled diffeomorphism φs(u) := ln (js (eu)) is C3 with negative third derivative.

Corollary 5.4. The family F3 satisfies the “stability implies G.A.S.” property.
The above statement can be reformulated as follows.
If φs(u) := ln (js (eu)) is three times continuously differentiable with φ′′′s (u) < 0 for all u ∈

(− ln bs, ln bs), then (3.13) satisfies the “stability implies G.A.S.” property.



18 D. Franco, J. Perán and J. Segura

Proof. Apply Lemma 3.8 and Corollary 5.2.

Remark 5.5. Corollary 2.7 in [22] is a consequence of Corollary 5.4 above for s = 1 and
ρ = +∞. Indeed, function g in [22] corresponds to

g(y) = − ln
(
bh
(
e−αy)) = −φ−1

1 (−αy)− ln b,

up to normalization. Therefore,

Sg < 0 =⇒ Sφ1 > 0 =⇒ φ′′′1
φ′1

> 0 =⇒ φ′′′1 < 0,

where S denotes the Schwarzian derivative: (Sg)(z) := g′′′(z)
g′(z) −

3
2

(
g′′(z)
g′(z)

)2
.

5.1 L.A.S. does not imply G.A.S. for Seno’s model

In Section 4, it was proved that for models [M1–M8] the property “L.A.S implies G.A.S.” is
true for θ∈ {0, 1}. In view of this, it would be natural to conjecture the validity of the property
for (2.5) with any intervention moment θ ∈ [0, 1]. Nevertheless, the conjecture would be false.
To prove this, under the conditions of Theorem 3.6, it is enough to find population parameters
for which minz∈(1,b) σs(z) < σs(1). Surprisingly, the counterexample can be found using one
of the models for which we have seen that harvest time is not destabilizing, namely the
Maynard Smith–Slatkin model. Consider (3.13) for h(x) = 1/(1 + x), b = 10.35, c = 9.16286
and s = 0.000150618. The global minimum of σs is in that case approximately 5.77, while
σs(1) ≈ 11.80. Hence, according to Theorem 3.6, the equilibrium is L.A.S. but not G.A.S. for
any α ∈ (5.77, 11.80) (cf., Figure 5.1-A).

If we fix α = 5.9, the aforementioned equation is equivalent to (4.3) for κ = 46, γ =

0.775 and θ = 0.8853. From the biological point of view, the latter corresponds to a certain
population that is harvested at a given moment during the harvesting season. Let us study the
effect that changing the moment of intervention would have on the stability of the equilibrium
size of this population. If harvesting was exerted at the beginning or at the end of the season
(i.e., θ = 0 or θ = 1), the equilibrium would be unstable (the derivative of the production
function at that point is approximately−4.33). The above discussion shows that harvest timing
can be stabilizing by itself in this case, since we have seen that the equilibrium is L.A.S. for θ ≈
0.8853. Numerical simulations reveal that this happens not only for this intervention moment
but for all those ranging from 0.8546 to 0.9368, approximately. However, the asymptotic
stability of the equilibrium is only local for all these harvest times, given that the inequality
minz∈(1,bs) σs(z) ≤ α < σs(1) holds for all of them.

The local stability of the equilibrium implies that nearby orbits are attracted towards it,
being the convergence speed determined by the absolute value of the derivative of the pro-
duction function at that point. In the case considered above, harvest time is not only stabi-
lizing but can also turn the equilibrium into superstable by reducing that derivative to zero.
This happens for two intervention moments, namely θ ≈ 0.8853 and θ ≈ 0.918668 (cf., Figure
5.1-B). On the other hand, we have seen that for θ ≈ 0.8853 the equilibrium is not G.A.S.,
and thus some nonzero orbits escape from its attraction. It would be possible that this only
happened for few initial conditions, but it is not the case and the equilibrium coexists with
another positive attractor, namely an attracting 12-cycle (cf., Figure 5.1-C).

This example shows that the stabilization of a population through a delay in the time
of intervention is a sensitive issue: we could achieve the local stability of the equilibrium,
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even with the fastest possible convergence of nearby orbits and, at the same time, induce
bistability in the global population dynamics. Such a situation is in general undesirable, since
small perturbations could lead to sudden sharp changes in the population size. Finally, this
example provides a family of first order difference equations arising in population dynamics
where “L.A.S. does not imply G.A.S.”. We note that for higher order difference equations
motivated by population dynamics, it was showed recently in [18] that “L.A.S. does not imply
G.A.S.” for Clark’s equation with a nonlinearity with negative Schwarzian derivative if the
order of the equation is at least four.
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Figure 5.1: A: The black curve corresponds to σs ◦ exp for (3.13) with h(x) =

1/(1 + x), b = 10.35, c = 9.16286 and s = 0.000150618. For α < minz∈(1,b) σs(z)
the equilibrium is G.A.S., for minz∈(1,b) σs(z) < α < σs(1) it is L.A.S. but not
G.A.S., and for α > σs(1) it is unstable. B: The black curve corresponds to
the production function f given by (4.3) for κ = 46, α = 5.9, γ = 0.775 and
θ = 0.8853, and the red curve corresponds to f ◦ f . C: Bifurcation diagram of
(4.3) for κ = 46, α = 5.9, γ = 0.775 for varying harvest time in the range for
which the equilibrium is locally asymptotically stable. Red dots correspond to
the initial condition x0 = 6, and blue dots correspond to x0 = 6.6. The vertical
dashed lines represent the intervention moments for which the equilibrium is
superstable (namely θ ≈ 0.8853 and θ ≈ 0.918668).
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