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Abstract. In this paper, a system of two coupled damped Duffing resonators driven
by a van der Pol oscillator with delays is studied. Some sufficient conditions to ensure
the periodic and partial periodic oscillations for the system are established. Computer
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1 Introduction

The dynamics of isolated and coupled Duffing oscillators or Duffing–van der Pol oscillators
with or without time delays is an important topic of research in different fields of science
and engineering. For example, the magneto-elastic mechanical systems [5], large amplitude
oscillation of centrifugal governor systems [30], nonlinear vibration of beams and plates [14],
electroencephalogram signals model [3], micro-electro-mechanical systems resonators [11],
fluid flow and gas flow induced vibration [23], a weak signal detection method [35], are mod-
eled by the nonlinear Duffing equations or Duffing–van der Pol equations. Many researchers
have studied various Duffing systems [4,9,12,16,17,22,29,37]. Recently, the study of nonlinear
dynamics of micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems
(NEMS) has grown rapidly over the last decades. It is known that the fundamental study
of coupled nonlinear oscillators is very important in understanding the emergent behavior
of complex dynamical systems in MEMS or NEMS. Analysis of simple cases as the building
blocks in MEMS or NEMS can gain insight into larger complicated systems. In 2009, Karabalin
et al. have discussed a system of two coupled nonlinear nano-electro-mechanical resonators
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using a structure of doubly clamped beams with a shared mechanical ledge. The authors mod-
eled the behavior of the two strongly interacting nonlinear resonators by a coupled equations
of motion for the beam as follows [8]:{

x′′1 (t) + γ1x′1(t) + ω2
1x1(t) + α1x3

1(t) + D(x1(t)− x2(t)) = gD1(t),

x′′2 (t) + γ2x′2(t) + ω2
2x2(t) + α2x3

2(t) + D(x2(t)− x1(t)) = gD2(t).
(1.1)

By using the standard methods of secular perturbation theory, the complex nonlinear be-
havior of the system has been demonstrated. Nonlinear response of one oscillation can be
modified by driven the second oscillation. Complicated frequency-sweep response curves
are found when both oscillations are driven into their strongly nonlinear range. The nonlin-
ear behavior of coupled equations can be understood, controlled, and exploited. In order to
understand the emergent behavior of complex dynamical systems and develop novel NEMS
devices, Wei et al. [19,26] have investigated the dynamics of a periodically driven Duffing res-
onator coupled to a van der Pol oscillator using the standard two time scales approach. The
motion of the coupled dynamical system is described by the following equations:{

x′′1 (t) + εµ1x′1(t) + x1(t) + εαx3
1(t) = εβ(x2(t)− x1(t)) + εF cos(Ωτ),

x′′2 (t) + εµ2(x2
2(t)− 1)x′2(t) + x2(t) = εβ(x1(t)− x2(t)).

(1.2)

Due to the difference of order of magnitude about the coupling stiffness and other parame-
ters, however, it is not easy to investigate the effects of the coupling stiffness on the steady
state response using the multiple time scales analysis method. Therefore, Leung et al. have
discussed the following damped Duffing resonator driven by a van der Pol oscillator [13]:{

u′′1 (t)− ε1u′1(t) + Ω2
1u1(t) + k1u3

1(t)− kc(u2(t)− u1(t)) = 0,

u′′2 (t)− ε2(u2
2(t)− 1)u′2(t) + Ω2

2u2(t)− kc(u1(t)− u2(t)) = 0.
(1.3)

By solving nonlinear algebraic equations, highly accurate bifurcation frequencies for various
parameters are provided. The effects of the nonlinear damping, coupling stiffness on the
angular frequency and amplitude of steady state response are studied. The obtained results
were in good agreement with respect to the numerical integration solutions. Rand and Wong
have considered a system of four coupled phase-only oscillators. The qualitative dynamics
is depended upon a parameter representing coupling strength. This work has been used to
MEMS artificial intelligence decision-making devices [18].

It is known that time delay is ubiquitous in many physical systems, for example due to
finite switching speeds of amplifiers in electronic circuits, finite signal propagation times in
networks and circuits, and so on. Recently, many researchers have studied the dynamical
behavior of various isolated and coupled time delay systems [6, 20, 27, 28, 33, 34, 36]. Zhang et
al. have investigated three coupled van der Pol oscillators with delay as follows [34]:

x′′1 (t) + x1(t)− ε1(1− x2
1(t))x′1(t) = k[x2(t− τ)− x1(t− τ)] + k[x3(t− τ)− x1(t− τ)],

x′′2 (t) + x2(t)− ε1(1− x2
2(t))x′2(t) = k[x3(t− τ)− x2(t− τ)] + k[x1(t− τ)− x2(t− τ)],

x′′3 (t) + x3(t)− ε1(1− x2
3(t))x′3(t) = k[x1(t− τ)− x3(t− τ)] + k[x2(t− τ)− x3(t− τ)].

(1.4)
By using a symmetric Hopf bifurcation theory, the Hopf bifurcations at zero point appear
as the delay increases and the existence of multiple periodic solutions are also established.
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Luo and Huang have studied a discontinuous dynamics of a non-linear, self-excited, friction-
induced, periodically forced oscillator [15]. Tchakui and Woafo have discussed the dynamics
of three unidirectionally coupled autonomous Duffing oscillators and application to inch-
worm piezoelectric motors [24]. Verichev et al. have investigated the dynamics of a “flexible-
rotor/limited-power-excitation-source” system [25]. The vibration of the mass unbalance of
the rotating component in a power plant has been studied by Kim et al. [10]. For dynamic anal-
ysis of a system of Van der Pol–Duffing oscillators with delay coupled, Zang et al. have inves-
tigated the existence of Hopf bifurcation and the bifurcation periodic solution [31]. Rusinek
et al. have discussed the dynamics of a time delayed Duffing oscillator [21]. Motivated by the
above research work, in this paper we shall extend Leung’s system to the following model:

x′′1 + ε1x′1 + Ω2
1x1 + k1x3

1 = p1[x2(t− τ̃2)− x1(t− τ̃1)] + q1[x3(t− τ̃3)− x1(t− τ̃1)],

x′′2 + ε2x′2 + Ω2
2x2 + k2x3

2 = p2[x3(t− τ̃3)− x2(t− τ̃2)] + q2[x1(t− τ̃1)− x2(t− τ̃2)],

x′′3 + ε3(x2
3 − 1)x′3 + Ω2

3x3 = p3[x1(t− τ̃1)− x3(t− τ̃3)] + q3[x2(t− τ̃2)− x3(t− τ̃3)],
(1.5)

where xi = xi(t) represents coordinate, ε i, Ωi (i = 1, 2, 3), k j (j = 1, 2) are the damping
coefficient, linear frequency and nonlinear stiffness of the Duffing resonator respectively. pi, qi
(i = 1, 2, 3) are the coupling linear stiffness between the three resonators. It is well known
that the Duffing oscillator is a nonlinear second order differential equation. The equation
describes the motion of a damped oscillator with a complex potential than in simple harmonic
motion. The Duffing oscillator is an example of a dynamical system that exhibits chaotic
behavior. In system (1.5), the first two Duffing oscillators are coupled and driven by a van
der Pol oscillator, in which the system appeared a partial oscillation under some restrictive
conditions. It is an interesting phenomenon. By means of mathematical analysis method,
some sufficient conditions to ensure the periodic and partial periodic oscillations of system
(1.5) were obtained. Numerical simulation is provided to support our result. It should be
emphasized that if the constants ε i, Ωi, pi, qi, τ̃i (i = 1, 2, 3), k j (j = 1, 2) are different values,
then the method of Hopf bifurcation is very hard to deal with system (1.5). This is due to the
complexity of finding the bifurcating parameter.

2 Preliminaries

Let τ1 = τ̃1, τ3 = τ̃2, τ5 = τ̃3. It is convenient to write (1.5) as an equivalent six-dimensional
first order system

u′1 = u2,

u′2 = −ε1u2 −Ω2
1u1 − k1u3

1 + p1[u3(t− τ3)− u1(t− τ1)] + q1[u5(t− τ5)− u1(t− τ1)],

u′3 = u4,

u′4 = −ε2u4 −Ω2
2u3 − k2u3

3 + p2[u5(t− τ5)− u3(t− τ3)] + q2[u1(t− τ1)− u3(t− τ3)],

u′5 = u6,

u′6 = −ε3(u2
5 − 1)u6 −Ω2

3u5 + p3[u1(t− τ1)− u5(t− τ5)] + q3[u3(t− τ3)− u5(t− τ5)],
(2.1)

where ui = ui(t) (i = 1, 2, . . . , 6). The matrix form of system (2.1) is as follows:

U′(t) = AU(t) + BU(t− τ) + P(U(t)) (2.2)
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where U(t) = [u1(t), u2(t), u3(t), u4(t), u5(t), u6(t)]T, U(t − τ) = [u1(t − τ1), 0, u3(t − τ3), 0,
u5(t− τ5), 0]T,

A = (aij)6×6 =



0 1 0 0 0 0
−Ω2

1 −ε1 0 0 0 0
0 0 0 1 0 0
0 0 −Ω2

2 −ε2 0 0
0 0 0 0 0 1
0 0 0 0 −Ω2

3 ε3


,

B = (bij)6×6 =



0 0 0 0 0 0
l1 0 p1 0 q1 0
0 0 0 0 0 0
q2 0 l2 0 p2 0
0 0 0 0 0 0
p3 0 q3 0 l3 0


, P(U(t)) =



0
−k1u3

1
0

−k2u3
3

0
−ε3u2

5u6


,

where li = −pi − qi (i = 1, 2, 3). Obviously, the linearized system of (2.2) is the following:

U′(t) = AU(t) + BU(t− τ). (2.3)

Definition 2.1. A solution of system (2.1) is called oscillatory if the solution is neither eventu-
ally positive nor eventually negative.

Definition 2.2. An oscillatory solution of system (2.1) is called partial oscillation if there is at
least one component of the solution is non-oscillatory.

Lemma 2.3. Assume that system (2.1) has a unique equilibrium point and all solutions are bounded.
If the unique equilibrium point of system (2.1) is unstable, then system (2.1) generates a limit cycle. In
other words, there exists a periodic oscillatory solution of system (2.1).

Proof. See [1] and the appendix of [2].

Lemma 2.4. For selected parameter values Ωi, pi, qi (i = 1, 2, 3), if M is a nonsingular matrix, then
system (2.1) has a unique equilibrium point. where

M = (cij)3×3 =

 −Ω2
1 + p1 + q1 −p1 −q1

−q2 −Ω2
2 + p2 + q2 −p2

−p3 −q3 −Ω2
3 + p3 + q3

 .

Proof. An equilibrium point u∗ = (u∗1 , u∗2 , u∗3 , u∗4 , u∗5 , u∗6)
T of system (2.1) is a constant solution

of the following algebraic equation

u∗2 = 0,

−ε1u∗2 −Ω2
1u∗1 − k1(u∗1)

3 − p1[u∗3 − u∗1 ]− q1[u∗5 − u∗1 ] = 0,

u∗4 = 0,

−ε2u∗4 −Ω2
2u∗3 − k2(u∗3)

3 − p2[u∗5 − u∗3 ]− q2[u∗1 − u∗3 ] = 0,

u∗6 = 0,

−ε3[(u∗5)
2 − 1]u∗6 −Ω2

3u∗5 − p3[u∗1 − u∗5 ]− q3[u∗3 − u∗5 ] = 0.

(2.4)
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Since u∗2 = 0, u∗4 = 0, u∗6 = 0, from (2.4) we have
(−Ω2

1 + p1 + q1)u∗1 − p1u∗3 − q1u∗5 = k1(u∗1)
3,

−q2u∗1 + (−Ω2
2 + p2 + q2)u∗3 − p2u∗5 = k2(u∗3)

3,

−p3u∗1 − q3u∗3 + (−Ω2
3 + p3 + q3)u∗5 = 0.

(2.5)

We first consider the homogeneous system associated with system (2.5) as follows:
(−Ω2

1 + p1 + q1)u∗1 − p1u∗3 − q1u∗5 = 0,

−q2u∗1 + (−Ω2
2 + p2 + q2)u∗3 − p2u∗5 = 0,

−p3u∗1 − q3u∗3 + (−Ω2
3 + p3 + q3)u∗5 = 0.

(2.6)

Since M is a non-singular matrix, the determinant of the coefficient matrix of system (2.6)
does not equal to zero. According to the algebraic basic theorem, system (2.6) implies that
u∗1 = 0, u∗3 = 0, u∗5 = 0. In other words, system (2.6) has a unique zero point.

We see that the third equation of system (2.5) is the same as the third equation of system
(2.6). Note that g(u∗1) = k1(u∗1)

3 and h(u∗3) = k2(u∗3)
3 both are monotone functions, and only

g(0) = h(0) = 0. This implies that u∗ = (0, 0, 0, 0, 0, 0)T is the unique equilibrium point of
system (2.1). The proof is completed.

For a matrix D = (dij)6×6, we adopt the matrix norm ‖D‖ = max1≤j≤6 ∑6
i=1 |dij|, and the

matrix measure µ(D) = max1≤j≤6(djj + ∑6
i=1,i 6=j |dij|).

Lemma 2.5. Let r21 = Ω2
1 + k1u2

1, r43 = Ω2
2 + k2u2

3, r66 = ε3(u2
5 − 1). Assume that 0 < ε i (i =

1, 2, 3), k j > 0 (j = 1, 2), if the following condition holds:

‖B‖ ≤ −µ(R) (2.7)

where

R = (rij)6×6 =



0 1 0 0 0 0
−r21 −ε1 0 0 0 0

0 0 0 1 0 0
0 0 −r43 −ε2 0 0
0 0 0 0 0 1
0 0 0 0 −Ω2

3 −r66


,

then all solutions of system (2.1) are bounded.

Proof. Note that time delay affects the stability of the solutions, it does not affect the bound-
edness of the solutions. To avoid unnecessary complexity, consider a special case of system
(2.1) as τ1 = τ3 = τ5 = τ∗, in the following:

u′1 = u2,

u′2 = −ε1u2 − (Ω2
1 + k1u2

1)u1 + p1[u3(t− τ∗)− u1(t− τ∗)] + q1[u5(t− τ∗)− u1(t− τ∗)],

u′3 = u4,

u′4 = −ε2u4 − (Ω2
2 + k2u2

3)u3 + p2[u5(t− τ∗)− u3(t− τ∗)] + q2[u1(t− τ∗)− u3(t− τ∗)],

u′5 = u6,

u′6 = −ε3(u2
5 − 1)u6 −Ω2

3u5 + p3[u1(t− τ∗)− u5(t− τ∗)] + q3[u3(t− τ∗)− u5(t− τ∗)].
(2.8)
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The matrix form of system (2.8) is the following:

U′(t) = RU(t) + BU(t− τ∗). (2.9)

From ‖B‖ ≤ −µ(R) we have µ(R) < 0 and |µ(R)| > ‖B‖. Define

‖U(t)‖τ∗ =
6

∑
i=1

(|ui(t)|+
∫ t

t−τ∗
|ui(s)|ds) (2.10)

and

β(s) =
|µ(R)| − ‖B‖

1 + τ∗
s +
|µ(R)| − ‖B‖

1 + τ∗
τ∗. (2.11)

Obviously, β(−τ∗) = 0, β(0) = τ∗(|µ(R)|−‖B‖)
1+τ∗ > 0, and β′(0) = β(0)

τ∗ > 0. Let U(t) (t ≥ −τ∗) be
any solution of (2.7). Consider a Lyapunov functional

V(t, U(·)) =
6

∑
i=1

(|ui(t)|+
6

∑
j=1
|bij|

∫ t

t−τ∗
|ui(s)|ds) +

∫ t

t−τ∗
β(s− t)‖U(s)‖ds], t > τ∗. (2.12)

Calculating the upper right derivative D+V of V along the solution of (2.9), we derive that

D+V(t, U(·))|(2.9) ≤
6

∑
i=1

(|u′i(t)|+
6

∑
j=1
|bij|(|uj(t)| − |uj(t− τ∗)|)) + β(0)‖U(t)‖

− β(−τ∗)‖U(t− τ∗)‖ −
∫ t

t−τ∗
β′(s− t)‖U(s)‖ds

≤ − (|µ(R)| − ‖B‖ − β(0))‖U(t)‖ − β(0)
τ∗

∫ t

t−τ∗
‖U(s)‖ds

< −
(
|µ(R)| − ‖B‖

1 + τ∗

)
‖U(t)‖∗τ

< − (|µ(R)| − ‖B‖)V(t, U(·))
(1 + τ∗)[(1 + ‖B‖) + β(0)]

< 0. (2.13)

From the definition of V and D+V < 0, this implies the boundedness of the solutions of
system (2.9) [7].

3 Periodic and partial periodic oscillations

Note that k1, k2 and ε3 are constants, u3
1, u3

3 and u2
5 are high order infinitesimal as u1, u3 and u5

tend toward to zero respectively. So, the unique equilibrium point which is exactly the zero
point of system (2.1) and system (2.3), have the same stability or instability. The oscillatory
behavior of the solution of system (2.3) implied that the solution of system (2.1) is also os-
cillatory. Assume that ε i > 0 (i = 1, 2, 3) and all solutions of system (2.1) are bounded. We
first point out that the component u6 of the trivial solution of system (2.3) is unstable. Con-
sider the subsystem constructing by the fifth and sixth equations of system (2.3) as follows
(u1 = u3 = 0): {

u′5 = u6

u′6 = −ε3(u2
5 − 1)u6 −Ω2

3u5 − p3u5(t− τ5)− q3u5(t− τ5).
(3.1)
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Suppose that t1 and t2 are suitably large zero points such that u6(t1) = u6(t2) = 0. To show
that the component u6(t) of the trivial solution is unstable we shall prove that there exists
t(t1 < t < t2) such that |u6(t)| > 0. If such t does not exist, then u6(t) = 0 for arbitrary
t ∈ [t1, t2]. Thus, from the first equation of (3.1), u5(t)(t1 + τ5 ≤ t ≤ t2 − τ5) is a constant
which equals u5(t1). If u5(t1) = 0, then from the second equation of (3.1) we get

u′6 = ε3u6. (3.2)

Note that u6(t1) = 0, integrating both sides of (3.2) from t1 to t we get

u6(t) = eε3(t−t1). (3.3)

(3.3) implies that u6(t) 6= 0 for arbitrary t (t1 < t < t2). This contradicts u6(t) = 0 for arbitrary
t ∈ [t1, t2]. If u5(t1) 6= 0, then

u6(t) =
−Ω2

3u5(t1)− p3u5(t1)− q3u5(t1)

ε3(u2
5(t1)− 1))

− (−Ω2
3u5(t1)− p3u5(t1)− q3u5(t1)) exp(ε3(u2

5(t1)− 1)t1)

(ε3(u2
5(t1)− 1))) exp(ε3(u2

5(t1)− 1)t)
. (3.4)

Obviously, u6(t) 6= 0 (t1 < t < t2). This means that the component u6(t) of the trivial solution
of system (2.3) is unstable. It is easy to see that u5(t) is also unstable since u′5(t) = u6(t). There-
fore, for unbalanced damped Duffing oscillators model (2.3), if the components u1, u2, u3, and
u4 of the trivial solution are globally asymptotically stable, then the system generates a par-
tial periodic oscillation. In order to discuss the asymptotic stability of components u1, u2, u3,
and u4, we investigate the subsystem constructed by the first four equations of system (2.3)
(u5(t) = 0): 

u′1 = u2,

u′2 = −ε1u2 −Ω2
1u1 + p1[u3(t− τ3)− u1(t− τ1)]− q1u1(t− τ1),

u′3 = u4,

u′4 = −ε2u4 −Ω2
2u3 − p2u3(t− τ3) + q2[u1(t− τ1)− u3(t− τ3)].

(3.5)

For convenience, we make the change of variables as y1(t) = u1
(
t − τ1−τ3

2

)
, y2(t) =

u2
(
t − τ1−τ3

2

)
, y3(t) = u3(t), y4(t) = u4(t) if τ1 > τ3, or y1(t) = u1

(
t − τ3−τ1

2

)
, y2(t) =

u2
(
t− τ3−τ1

2

)
, y3(t) = u3(t), y4(t) = u4(t) if τ1 < τ3 [32]. We can then rewrite system (3.5) as

the following equivalent system
y′1 = y2,

y′2 = −ε1y2 −Ω2
1y1 + p1[y3(t− τ̄)− y1(t− τ̄)]− q1y1(t− τ̄),

y′3 = y4,

y′4 = −ε2y4 −Ω2
2y3 − p2y3(t− τ̄) + q2[y1(t− τ̄)− y3(t− τ̄)],

(3.6)

where τ̄ = τ1+τ3
2 . The matrix form of (3.6) is as follows:

Y′(t) = A1Y(t) + B1Y(t− τ̄), (3.7)

where Y(t) = (y1(t), . . . , y4(t))T, Y(t− τ̄) = (y1(t− τ̄), 0, y3(t− τ̄), 0)T,

A1 = (aij)4×4 =


0 1 0 0
−Ω2

1 −ε1 0 0
0 0 0 1
0 0 −Ω2

2 −ε2

 ,
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B1 = (bij)4×4 =


0 0 0 0

−p1 − q1 0 p1 0
0 0 0 0
q2 0 −p2 − q2 0

 .

Theorem 3.1. Suppose that there exists a unique equilibrium point and all solutions of system (2.1) are
bounded. Let ε i > 0 (i = 1, 2), γ1, γ2, γ3, γ4 be the eigenvalues of matrix A1 + B1, which has a nega-
tive real part, namely, Re γi < 0 (i = 1, 2, 3, 4). We set γ = min{|Re γ1|, |Re γ2|, |Re γ3|, |Re γ4|}.
Assume that

τ̄(‖A1‖+ ‖B1‖)‖B1‖
γ

< 1. (3.8)

Then system (2.1) has a partial periodic oscillation.

Proof. Since ε i > 0 (i = 1, 2), and all solutions of system (2.1) are bounded, according to the
above analysis, the component u6 and u5 are unstable. Therefore, we only need to show that
the components ui or yi (i = 1, . . . , 4) are stable. Then system (2.1) generates a partial periodic
oscillation. Consider system (3.7) for t ≥ τ̄ we have

Y′(t) = (A1 + B1)Y(t))− B1

∫ t

t−τ̄
Y′(s)ds

= (A1 + B1)Y(t))− B1

∫ t

t−τ̄
[A1Y(s) + B1Y(s− τ̄)]ds (3.9)

leading to

Y(t) = e(A1+B1)(t−τ̄)Y(τ̄))−
∫ t

τ̄
ds
∫ s

s−τ̄
e(A1+B1)(t−s)B1[A1Y(σ) + B1Y(σ− τ̄)]dσ (3.10)

and hence

‖Y(t)‖ ≤ ‖Y‖τ̄e−γ(t−τ̄) + ‖B1‖
∫ t

ds
∫ s

s−τ̄
e−γ(t−s)(‖A1‖‖Y(σ)‖+ ‖B1‖‖Y(σ− τ̄)‖)dσ, (3.11)

where ‖Y‖τ̄ = supt∈[−τ̄,τ̄] ‖Y(t)‖. From (3.8), there exists a positive constant α (α < γ) such
that for arbitrary t > τ̄ the following inequality holds:(

1− τ̄(‖A1‖+ ‖B1‖)‖B1‖
γ

)
e−α(t−τ̄) ≥ e−γ(t−τ̄). (3.12)

From (3.11) and (3.12), we get

‖Y(t)‖ ≤ ‖Y‖τ̄e−α(t−τ̄), t > τ̄. (3.13)

Inequality (3.13) implies the global asymptotic stability of the equilibrium point of system
(3.8). This suggests that the equilibrium point of system (3.6) is globally asymptotically stable.
So system (2.1) has a partial periodic oscillation.

In the following let AT and A−1 be the transpose and the inverse of a square matrix A
respectively. A > 0 (< 0) will be denoted a positive (negative) definite matrix A.

Theorem 3.2. Suppose that there is a unique equilibrium point and all solutions of system (2.1) are
bounded. In addition, there is a positive definite four by four matrix P and a positive diagonal four by
four matrix Q such that [

AT
1 P + PA1 + Q PB1

BT
1 P −Q

]
< 0, (3.14)

then system (2.1) has a partial periodic oscillation.
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Proof. Similar to Theorem 3.1, we only need to prove that the components yi (i = 1, . . . , 4) of
the trivial solution of system (3.7) are stable. For system (3.7), we will employ the following
positive definite Lyapunov functional

W(t) = YTPY(t) +
∫ t

t−τ̄
YT(s)QY(s)ds. (3.15)

The upper right derivative of W(t) along the trajectories of the system (3.7) is obtained as
follows:

D+W(t)|(3.7) = (YT(t)AT
1 + YT(t− τ̄)BT

1 )PY(t) + YT(t)P(A1Y(t) + B1Y(t− τ̄))

+ YT(t)QY(t)−YT(t− τ̄)QY(t− τ̄)

= YT(t)(AT
1 P + PA1 + Q)Y(t) + YT(t)PB1Y(t− τ̄)

+ YT(t− τ̄)BT
1 PY(t)−YT(t− τ̄)QY(t− τ̄)

= (YT(t) YT(t− τ̄))

[
AT

1 P + PA1 + Q PB1

BT
1 P −Q

] (
Y(t)

Y(t− τ̄)

)
< 0. (3.16)

This means that the trivial solution of system (3.7) is asymptotically stable, and implies that
system (2.1) for arbitrary τ1 and τ3 has a partial periodic oscillation.

Theorem 3.3. Suppose that system (2.1) has a unique equilibrium point and all solutions of system
(2.1) are bounded. If A1 + B1 > 0, then system (2.1) generates a periodic oscillation.

Proof. According to Lemma 2.3 we only need to show that the equilibrium point of subsystem
(3.7) is unstable since the components u5 and u6 of the equilibrium point of system (2.3) are
unstable. The characteristic equation associated with system (3.7) is given by:

λ = A1 + B1e−λτ̄. (3.17)

Note that (3.17) is a transcendental equation and λ may be a complex number. We prove
that there exists a positive eigenvalue of (3.17) under the condition A1 + B1 > 0. If we set
f (λ) = λ − A1 − B1e−λτ̄, then f (λ) is a continuous function of λ. Since A1 + B1 > 0, then
f (0) = −A1 − B1 = −(A1 + B1) < 0. When λ is sufficiently large, say λ = λ∗ > 0, e−λ∗ τ̄ is
sufficiently small, and f (λ∗) = λ∗ − A1 − B1e−λ∗ τ̄ > 0, then there exists λ = λ̃, λ̃ ∈ (0, λ∗)

such that f (λ̃) = 0. This means that there is a positive eigenvalue of the characteristic equation
(3.17) for any time delay τ̄, implying that the equilibrium point of system (2.1) is unstable for
arbitrary time delays τ1 and τ3, and system (2.1) generates a periodic oscillation.

Theorem 3.4. Suppose that system (2.1) has a unique equilibrium point and all solutions are bounded.
Let α1, α2, . . . , α6 and β1, β2, . . . , β6 denote the eigenvalues of matrices A and B respectively. αi =

αi1 + iαi2 (αi2 may be zero), and for some j (j ∈ {1, 2, . . . , 6}, αj1 > 0), then the trivial solution of
system (2.3) is unstable and system (2.1) generates a periodic oscillation.

Proof. In this case, let τ∗ = min{τ1, τ3, τ5}. Corresponding system (2.3) we consider the fol-
lowing special system

U′(t) = AU(t) + BU(t− τ∗), (3.18)

where τ1 = τ3 = τ5 = τ∗. The characteristic equation of (3.18) is the following:

det[λE− A− Be−λτ∗ ] = 0, (3.19)
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where E is the six by six unit matrix. Immediately we have that

6

∏
k=1

[λ− αk − βke−λτ∗ ] = 0. (3.20)

If we let λ = σ + iω be an eigenvalue of system (3.18), then for some αj1 > 0 we get

{
σ− αj1 − β j1e−στ∗ cos(ωτ∗) = 0,

ω− αj2 − β j2e−στ∗ sin(ωτ∗) = 0.
(3.21)

We shall show that σ > 0 and there is an eigenvalue which has a positive real part for system
(3.18). Indeed, let f (σ) = σ− αj1 − β j1e−στ∗ cos(ωτ∗), then f (σ) is a continuous function of σ.
Since αj1 > 0, one can select a suitable delay τ∗ such that β j1 cos(ωτ∗) > −αj1. Therefore,
f (0) = −αj1 − β j1 cos(ωτ∗) < 0. Noting that e−στ∗ → 0 as στ∗ → +∞, obviously, there exists
a suitably large σ̄(> 0) such that f (σ̄) = σ̄− αj1 − β j1e−σ̄τ∗ cos(ωτ∗) > 0. By the continuity of
f (σ), there exists a positive σ∗ ∈ (0, σ̄) such that f (σ∗) = 0. Thus, there is an eigenvalue of
the characteristic equation associated with system (3.20) which has a positive real part. This
means that the trivial solution of system (3.20) is unstable, implying that the trivial solution
of system (2.3) for τ1 = τ3 = τ5 = τ∗ is unstable. For a time delay system, if the trivial
solution is unstable, then the instability of the trivial solution will be maintained as time
delay increases. So for any delays the trivial solution of system (2.3) is also unstable. This
implies that system (2.1) generates a periodic oscillation. We select a suitable delay such that
the system has an oscillatory solution. This oscillation is said to induce by time delay. The
proof is completed.

4 Computer simulation result

In system (1.4), we select ε1 = 0.035, ε2 = 0.025, ε3 = 0.015; Ω2
1 = 0.016, Ω2

2 = 0.025, Ω2
3 =

0.12; κ1 = 25, κ2 = 15, p1 = 0.015, p2 = 0.025, p3 = 0.085, q1 = 0.0075, q2 = 0.0065, q3 = 0.0085.
Thus ‖A1‖ = 1.035, ‖B1‖ = 0.029. The eigenvalues of matrix A1 + B1 are −0.0166± 0.1842i,
−0.0134± 0.2474i, and γ = 0.0134. It is easy to check that the conditions of Lemma 2.4 and
Lemma 2.5 hold. When time delays are selected as τ1 = 0.012, τ2 = 0.015, τ3 = 0.02, and
τ1 = 0.12, τ2 = 0.15, τ3 = 0.2, respectively, we see that τ̄(‖A1‖+‖B1‖)‖B1‖

γ < 0.2·(1.035+0.029)·0.029
0.0134 =

0.4605 < 1. From Theorem 3.1, system (2.1) generates a partial periodic oscillation (see Fig-
ures 4.1a and 4.1b). When delays are increased, the convergent rate is slightly changed (see
Figures 4.2a and 4.2b).

When we select ε1 = 0.35, ε2 = 0.25, ε3 = 0.15; Ω2
1 = 0.96, Ω2

2 = 1.25, Ω2
3 = 2.15; κ1 =

0.2, κ2 = 0.5, p1 = 1.15, p2 = 1.25, p3 = 1.85, q1 = 0.75, q2 = 0.65, q3 = 0.85, and delays are τ1 =

0.2, τ2 = 0.4, τ3 = 0.5, and τ1 = 1, τ2 = 2, τ3 = 2.5, respectively, then the eigenvalues of matrix
A are 0.1750± 0.9460i,−0.1250± 1.0651i,−1.3932, and 1.5432. Note that 1.5432 > 0, and the
conditions of Theorem 3.4 are satisfied. Thus, system (2.1) generates a periodic oscillation (see
Figures 4.3 and 4.4).
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Figure 4.1: (a) u1(t), u2(t), and u3(t) are convergent; delays: 0.012, 0.015, 0.020.
Solid line: u1(t), dashed line: u2(t), dashdotted line: u3(t). (b) u4(t) is conver-
gent, both u5(t) and u6(t) are oscillatory; delays: 0.012, 0.015, 0.020. Solid line:
u4(t), dashed line: u5(t), dashdotted line: u6(t).
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Figure 4.2: (a) u1(t), u2(t), and u3(t) are convergent; delays: 1.2, 1.5, 2. Solid
line: u1(t), dashed line: u2(t), dashdotted line: u3(t). (b) u4(t) is convergent,
both u5(t) and u6(t) are oscillatory; delays: 1.2, 1.5, 2. Solid line: u4(t), dashed
line: u5(t), dashdotted line: u6(t).
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Figure 4.3: Oscillation of the solution; delays: 0.02, 0.04, 0.05. (a) Solid line:
u1(t), dashed line: u2(t), dashdotted line: u3(t). (b) u4(t), dashed line: u5(t),
dashdotted line: u6(t).
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Figure 4.4: Oscillation of the solution; delays: 0.2, 0.4, 0.5. (a) Solid line: u1(t),
dashed line: u2(t), dashdotted line: u3(t). (b) u4(t), dashed line: u5(t), dashdot-
ted line: u6(t).
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5 Conclusion

This paper discussed a system of two coupled damped Duffing oscillators driven by a van der
Pol oscillator with delays. Some sufficient conditions to ensure the periodic and partial peri-
odic oscillations for the system are established. Interestingly, this partial periodic oscillation
is induced by unbalanced damped oscillators. When periodic and partial periodic oscillations
occur, delays only affect the oscillation frequency. The study of micro-electro-mechanical phe-
nomena and nano-electro-mechanical phenomena often requires experimental methods that
can accurately control and manipulate the interaction between micro- and nano-objects. Our
results are helpful for developing of novel MEMS or NEMS devices, which can precisely con-
trol of these nanoscale interactions, provide an ideal platform for interacting with the micro-
and nano-world.
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