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Abstract. The goal of our paper is to study canard relaxation oscillations of predator–
prey systems with Holling type II of functional response when the death rate of preda-
tor is very small and the conversion rate is uniformly positive. This paper is a natural
continuation of [C. Li, H. Zhu, 2013; C. Li, 2016] where both the death rate and the
conversion rate are kept very small. We detect all limit periodic sets that can produce
the canard relaxation oscillations after perturbations and study their cyclicity by using
singular perturbation theory and the family blow-up.
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1 Introduction

The Rosenzweig–MacArthur predator–prey model is typically given by{
ẋ = rx

(
1− x

K

)
− y mx

b+x

ẏ = y
(
− δ + c mx

b+x

)
,

(1.1)

where x ≥ 0 is the population density of prey, y ≥ 0 is the population density of predator and
all the parameters are strictly positive. The function P(x) = mx

b+x is called the predator response
function, δ > 0 represents the death rate of the predator, c > 0 is the rate of conversion of
prey to predator and the function x 7→ rx

(
1− x

K

)
represents the logistic growth model of the

prey in the absence of predator. System (1.1) is a special case of more general predator–prey
systems with a Holling type response function P:{

ẋ = rx
(
1− x

K

)
− yP(x)

ẏ = y
(
− δ + cP(x)

)
,

(1.2)

with the same conditions on x, y and the parameters. The function P in (1.1) is an increasing
function and tends to m > 0 as x → ∞, and it is often called a Michaelis–Menten function
or a response function of Holling type II. We call the function P(x) = mx2

a+x2 , with m > 0
and a > 0, the response function of Holling type III, and its generalized version is given

BEmail: renato.huzak@uhasselt.be

https://doi.org/10.14232/ejqtde.2018.1.86
https://www.math.u-szeged.hu/ejqtde/


2 R. Huzak

by P(x) = mx2

a+bx+x2 . The Holling type IV response function or the Monod–Haldane function
is given by P(x) = mx

a+bx+x2 , and its simplified version is given by P(x) = mx
a+x2 . For more

details about the predator–prey model (1.2) with Holling type of functional responses, see e.g.
[16, 18]. We also refer to [9, 14, 19, 20], etc.

When working with predator–prey system (1.2), we typically assume that the parameters
are positive constants kept away from zero. Limit cycles of (1.2), with response functions
of Holling type II and generalized Holling types III and IV, have been studied in [15, 16],
uniformly in (δ, c) → (0, 0). When δ = c = 0, system (1.2) contains curves of singularities
(often called slow curves or critical curves). See e.g. Figure 1.1. Periodic orbits of (1.2) that
are Hausdorff close to limit periodic sets, at level δ = c = 0, containing pieces of the critical
curves and fast orbits are called relaxation oscillations (see e.g. [5, 6]). Thus, [15, 16] deal with
the relaxation oscillations of (1.2) when (δ, c) ∼ (0, 0), away from the degenerate intersection
point

(
0, br

m

)
, using geometric singular perturbation theory [3–5, 12].

(K, 0)

(0, br
m )

Figure 1.1: Dynamics of (1.1), with δ = c = 0.

The goal of our paper is to study another limiting case observed in [16]: δ → 0 and c is
a positive constant. When δ = 0 and c > 0, system (1.2) contains the critical curve {x = 0}
(note that P(0) = 0). Let us focus on system (1.1) (see Figure 1.2). All the singularities of the
critical curve are normally hyperbolic, except the nilpotent contact point (x, y) = (0, br

m ). We
distinguish between 3 types of limit periodic sets, at level δ = 0, that can generate limit cycles
when δ ∼ 0 and δ > 0 (see also Section 2): (i) the nilpotent contact point (x, y) = (0, br

m ), (ii)
canard limit cycles consisting of a fast orbit and the part of the critical curve, with a regular
slow dynamics, between the α-limit set and the ω-limit set of that fast orbit and (iii) the slow–
fast 2-saddle limit periodic set consisting of the hyperbolic saddle (x, y) = (K, 0), the stable
manifold of (x, y) = (K, 0), the unstable manifold of (x, y) = (K, 0) and the part of the critical
curve between the origin (i.e. the α-limit set of the stable manifold) and the ω-limit set of the
unstable manifold. (As we will see in Section 2, the slow dynamics of (1.1) along the critical
curve has a hyperbolic saddle at the origin.)

The goal of our paper is to study the cyclicity of each of these limit periodic sets by
using geometric singular perturbation theory and the family blow-up at (x, y, δ) = (0, br

m , 0).
To study the contact point (x, y) =

(
0, br

m

)
, we use the theory of slow–fast Hopf points of

codimension 1 developed in [12]. To find the cyclicity of the canard limit cycles, we study
zeros of the so-called slow-divergence integral of (1.1), using results from [3]. The paper [4]
is a generalization of [3] allowing zeros in the slow dynamics, away from the contact point.
Since the slow–fast 2-saddle limit periodic set contains, beside a zero of the slow dynamics at
the origin (x, y) = (0, 0), a (hyperbolic) saddle at (x, y) = (K, 0), away from the critical curve,
we cannot use the results of [4] directly. Thus, we have to develop new methods that are suitable for
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studying the cyclicity of the slow–fast 2-saddle limit periodic set. Clearly, the new techniques can
be used not only in the framework of (1.1) or (1.2), but also in more general planar slow–fast
systems.

(K, 0)

(0, br
m )

Figure 1.2: Dynamics of (1.1) for δ = 0 and c > 0.

In the regular case (δ is a positive constant), the system (1.1) has at most one limit cycle
(see [1, 13]). The reason we study limit cycles of (1.1) uniformly in δ → 0 is twofold. On one
hand, we cannot apply the methods of [1, 13] to the singular case δ → 0, and we need to use
techniques coming from singular perturbation theory, including the family blow-up. On the
other hand, our paper provides a good starting point to get familiar with the methods that
can be used not only to study the singular Holling type II case (1.1) but also the more general
system (1.2), with a response function of Holling type III and IV, in the singular case δ→ 0.

In Section 2 we state our main results. Our upper bounds on the number of limit cycles
in (1.1), with δ→ 0, are 1 or 2, depending on the region in the parameter space (see Theorem
2.2–Theorem 2.4). We prove our main results in Section 3.

2 Statement of results

We state our main results in Section 2.3–Section 2.5, clearly distinguishing between three
different types of limit periodic sets defined in Section 2.2. Instead of working with the
original predator–prey model (1.1), it is more convenient to work with a polynomial normal
form (2.4) obtained in Section 2.1.

2.1 Normal form of (1.1)

Let us recall that r > 0, K > 0, m > 0, b > 0, c > 0 and δ ≥ 0 is the singular perturbation
parameter in (1.1). After the rescaling (x̄, ȳ, b̄, c̄, δ̄) =

( x
K , m

rK y, b
K , cm

r , δ
r

)
, we may assume that

(1.1) has the following form: {
ẋ = x

(
1− x

)
− xy

b+x

ẏ = y
(
− δ + c x

b+x

)
,

(2.1)

where we denote (x̄, ȳ, b̄, c̄, δ̄) again by (x, y, b, c, δ). Thus, we have that x ≥ 0, y ≥ 0, b > 0,
c > 0 and δ ≥ 0 is the singular perturbation parameter (δ ∼ 0). Using a time rescaling, i.e.
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multiplication by b + x > 0, system (2.1) becomes a polynomial vector field:{
ẋ = x

(
b + (1− b)x− x2 − y

)
ẏ = y

(
− δ(b + x) + cx

)
.

(2.2)

When δ = 0, (2.2) becomes {
ẋ = x

(
b + (1− b)x− x2 − y

)
ẏ = cxy,

(2.3)

and we call (2.3) the fast subsystem of (2.2). The critical curve {x = 0} of (2.3) is normally
attracting when y > b and normally repelling when 0 ≤ y < b. When y = b, we deal with
a nilpotent contact point (see Figure 1.2). One of the reasons we work with the polynomial
system (2.2), instead of (2.1), is that we want to apply a family blow-up of (2.2) to the point
(x, y, δ) = (0, b, 0) (see Section 2.2). After translation ȳ = y− b, we may also assume that the
nilpotent contact point is situated at (x, y) = (0, 0). We get{

ẋ = x
(
(1− b)x− x2 − y

)
ẏ = (y + b)

(
− δ(b + x) + cx

)
,

(2.4)

where x ≥ 0 and y ≥ −b (we denote ȳ again by y).

2.2 Family blow-up at (x, y, δ) = (0, 0, 0) and the slow dynamics along the critical
curve

In this section we show that our slow–fast model (2.4), along the critical curve {x = 0}, fits into
a general framework of [4]. First, let us focus on the dynamics of (2.4), with δ ∼ 0 and δ > 0,
along the critical curve but away from the contact point. Center manifolds of (2.4) + 0 ∂

∂δ , near
the critical curve {x = 0}, with y 6= 0, are given by x = O(δm), for all m ≥ 1 (this can be
easily seen by using asymptotic expansions of center manifolds in δ). After substituting these
manifolds for x in the y-component of (2.4), we obtain the dynamics along the critical curve:
ẏ = δ(−b(y + b) + O(δ)). We get the slow dynamics of (2.4) after dividing this by δ and letting
δ tend to 0:

y′ = −b(y + b), y 6= 0. (2.5)

Since b > 0, the slow dynamics (2.5) is regular with one (isolated) hyperbolic saddle at y = −b, and
this singularity does not coincide with the contact point at y = 0. Thus, when y ≥ −b, the slow
dynamics points downwards (see also Figure 1.2).

To study the passage from the attracting part {y > 0} to the repelling part {y < 0} of
the critical curve, we write δ = δ̃2, with δ̃ ∼ 0 and δ̃ ≥ 0, and blow up the origin in the
(x, y, δ̃)-space by using the following blow-up formula:

(x, y, δ̃) = (ε2 x̄, εȳ, εδ̄), ε ≥ 0, ε ∼ 0, δ̄ ≥ 0, (x̄, ȳ, δ̄) ∈ S2. (2.6)

To study the blown up vector field in a small neighborhood of the blow-up locus {ε = 0},
we use different charts. In the family directional chart {δ̄ = 1}, system (2.4), after division by
ε > 0, becomes: {

˙̄x = x̄
(
(1− b)εx̄− ε3 x̄2 − ȳ

)
˙̄y = (εȳ + b)

(
− (b + ε2 x̄) + cx̄

)
.

(2.7)
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When ε = 0, system (2.7) has the following form:{
˙̄x = −x̄ȳ
˙̄y = −b2 + bcx̄.

(2.8)

Clearly, system (2.8) has a center at (x̄, ȳ) =
( b

c , 0
)
. After dividing (2.8) by x̄ 6= 0 it can be

easily seen that the function H(x̄, ȳ) = ȳ2

2 − b2 ln |x̄| + bcx̄ is a first integral of (2.8). In the
phase directional chart {ȳ = 1}, system (2.4) can be written as

˙̄x = x̄
(
(1− b)εx̄− ε3 x̄2 − 1

)
− 2x̄(ε + b)

(
− δ̄2(b + ε2 x̄) + cx̄

)
ε̇ = ε(ε + b)

(
− δ̄2(b + ε2 x̄) + cx̄

)
˙̄δ = −δ̄(ε + b)

(
− δ̄2(b + ε2 x̄) + cx̄

)
,

(2.9)

after division by ε. When ε = δ̄ = 0, (2.9) has two singularities: x̄ = − 1
2bc and x̄ = 0.

At (x̄, ε, δ̄) = (− 1
2bc , 0, 0), (2.9) has a hyperbolic saddle with eigenvalues (1,− 1

2 , 1
2 ), and at

(x̄, ε, δ̄) = (0, 0, 0), we deal with a semi-hyperbolic singularity (the eigenvalues of the linear
part are given by (−1, 0, 0)), with a two-dimensional center manifold and with the x̄-axis as
stable manifold. Each center manifold contains the line of singularities {x̄ = δ̄ = 0} and has
the following form: x̄ = O(δ̄m), for all m ≥ 1. Putting this in the (ε, δ̄)-component of (2.9) we
get the following center behavior: {ε̇ = εδ̄2(−b2 + O(ε, δ̄)), ˙̄δ = δ̄3(b2 + O(ε, δ̄))}, which has, after
division by δ̄2, an isolated hyperbolic saddle at (ε, δ̄) = (0, 0).

If we apply the coordinate change (ε, δ̄, t) → (−ε,−δ̄,−t) to (2.9), then we obtain the
blown-up vector field in the phase directional chart {ȳ = −1} (see (2.6)). In the charts {x̄ = 1}
and {x̄ = −1}, we find no extra singularities. See Figure 2.1.

Figure 2.1: Dynamics on the blow-up locus of (2.6).

Thus, the passage along the critical curve {x = 0}, with y ≥ −b, satisfies the assumptions
of [4]. Now we define the canard limit cycle Γ(b,c)

y , y ∈]− b, 0[, consisting of a regular orbit
of the fast subsystem of (2.4) and the part of the critical curve between the α-limit set (0, y)
and the ω-limit set (0, F(y)) of that regular orbit, where the fast relation function F depends on
(b, c) and F(y) > 0. Since the slow dynamics (2.5) is regular on the segment [y, F(y)] for each
y ∈] − b, 0[, we can use the so-called slow divergence integral of (2.4) along [y, F(y)] to study
limit cycles of (2.4) Hausdorff close to Γ(b,c)

y (see [3] or [4]). The slow divergence integral is
defined as:

I(y, b, c) :=
∫ F(y)

y

sds
−b(s + b)

, y ∈]− b, 0[, (2.10)
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where we use the fact that −y is the divergence of (2.4), with δ = 0, along the critical curve
{x = 0} and dτ = dy

−b(y+b) (see (2.5)). Following [3] or [4], the cyclicity of Γ(b0,c0)
y0 , with

y0 ∈] − b0, 0[, near b = b0 > 0 and c = c0 > 0, is bounded by the multiplicity of zero of
I(y, b0, c0) at y = y0, increased by one.

We denote by Γ(b,c)
−b the slow–fast 2-saddle limit periodic set in (2.4), at level δ = 0, con-

sisting of the horizontal orbit y = −b connecting the hyperbolic saddle (x, y) = (0,−b) of
the slow dynamics with the hyperbolic saddle (x, y) = (1,−b), the unstable manifold of
(x, y) = (1,−b), the ω-limit set (x, y) = (0, F(−b)) of the unstable manifold and the critical
curve [−b, F(−b)]. Note that Γ(b,c)

y → Γ(b,c)
−b in the Hausdorff sense as y → −b. Since the

segment [−b, F(−b)] contains the singularity of the slow dynamics, we cannot use (2.10) to
study the cyclicity of Γ(b,c)

−b (see [4]). See Sections 2.3 and 3.1 for more details.

Remark 2.1. Let us explain why the slow–fast 2-saddle limit periodic set Γ(b,c)
−b is well defined

for each b > 0 and c > 0, i.e. let us show that F(−b) < ∞ for all b > 0 and c > 0. Notice
that the unstable manifold of the hyperbolic saddle (x, y) = (1,−b) in (2.4) with δ = 0 is
given by x = 1− y+b

b+c+1 + O((y + b)2). Since the vector field (2.4), with δ = 0, points inwards
the (positively invariant) set D := {0 ≤ x ≤ 1, y ≥ −b} along the line {x = 1, y > −b},
the unstable manifold enters the set D and stays in D. For the system (2.4), with δ = 0,
the parabola y = (1 − b)x − x2 and the critical curve x = 0 represent the x-nullcline (see
Figure 2.2). To show that F(−b) < ∞ for b > 0, we have to study (2.4) near y = +∞. After
a coordinate change (x, y) = (X, 1

Y ), with Y ∼ 0 and Y > 0, and multiplication by Y, system
(2.4), for δ = 0, becomes {

Ẋ = X
(
(1− b)XY− X2Y− 1

)
Ẏ = −cXY2(1 + Yb).

(2.11)

where X ≥ 0 and Y ≥ 0. Singularities of (2.11) are given by {X = 0}; all the singularities are
semi-hyperbolic and attracting. Notice also that {Y = 0} is the stable manifold of the singular
point (X, Y) = (0, 0) and that the (local) stable manifold of the singular point (X, Y) = (0, Y0),
with Y0 ≥ 0 and Y0 ∼ 0, is the graph of the unique solution of the initial value problem
{ dY

dX = −cY2(1+Yb)
(1−b)XY−X2Y−1 , Y(0) = Y0}. Since the stable manifolds are unique, we have that

F(−b) < ∞.

(1,−1)
(1,−b)

(1,−b)

0 < b < 1 b = 1 b > 1

D D D(0, F(−b)) (0, F(−1))
(0, F(−b))

Figure 2.2: Nullclines and direction field for (2.4) with δ = 0.
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2.3 Cyclicity of Γ
(b,c)
−b

As explained in Section 1 and Section 2.2, the limit periodic set Γ(b,c)
−b contains one “singular”

hyperbolic saddle and one “regular” hyperbolic saddle. Using [4, 17] and the fact that the
connection between the two saddles is unbroken, we show that the singular hyperbolic saddle
is dominant, and we obtain the following cyclicity result:

Theorem 2.2. Let b0 > 0 and c0 > 0. There exist a small δ0 > 0, a neighborhoodW of (b0, c0) in the
(b, c)-space and a (Hausdorff) neighborhood V of Γ(b0,c0)

−b0
such that system (2.4) has at most one limit

cycle in V , for each value (δ, b, c) ∈ [0, δ0]×W . If the limit cycle exists, it is hyperbolic and repelling.

Theorem 2.2 will be proved in Section 3.1.

2.4 Cyclicity of Γ
(b,c)
y

To study zeros of the slow divergence integral (2.10), first we have to find properties of the fast
relation function F on ]− b, 0[ by using a first integral of (2.4), with δ = 0. When c = 2b + 2,
we find the first integral by using Darboux theory of integrability, and we get the following
cyclicity result:

Theorem 2.3. Let b0 > 0, c0 = 2b0 + 2. Suppose that C ⊂] − b0, 0[ is compact. The following
statements are true.

1. If 0 < b0 < 1, then there exist δ0 > 0, a neighborhood W of (b0, c0) in the (b, c)-space such
that the set ∪y∈CΓ(b0,c0)

y can produce at most two limit cycles in (2.4), for each value (δ, b, c) ∈
[0, δ0]×W .

2. If b0 ≥ 1, then there exist δ0 > 0, a neighborhoodW of (b0, c0) in the (b, c)-space such that the
set ∪y∈CΓ(b0,c0)

y can produce at most one limit cycle in (2.4), for each value (δ, b, c) ∈ [0, δ0]×W .
If the limit cycle exists, then it is hyperbolic and repelling.

Theorem 2.3 will be proved in Section 3.2. The case c 6= 2b + 2 is a topic of further studies.

2.5 Cyclicity of the contact point

To study the number of limit cycles close to a contact point, we typically blow up the contact
point and detect all possible limit periodic sets on the blow-up locus that can produce limit
cycles after perturbation: a center, closed orbits surrounding the center and a singular cycle
consisting of two semi-hyperbolic singularities on the equator of the blow-up locus and the
regular orbits that are heteroclinic to them (see Figure 2.1). When b 6= 1, we can bring our
system (2.4), near the contact point at the origin, to a normal form for a slow–fast Hopf point
of codimension 1 studied in e.g. [12], and we obtain at most one (hyperbolic) limit cycle.

Theorem 2.4. Let b0 > 0 and c0 > 0. The following statements are true:

1. If 0 < b0 < 1, then there exist δ0 > 0, a neighborhood W of (b0, c0) in the (b, c)-space and a
neighborhood V of (x, y) = (0, 0) such that system (2.4) has a repelling hyperbolic focus in V
and at most one (hyperbolically attracting) limit cycle in V , for each value (δ, b, c) ∈]0, δ0]×W .

2. If b0 > 1, then there exist δ0 > 0, a neighborhood W of (b0, c0) in the (b, c)-space and a
neighborhood V of (x, y) = (0, 0) such that system (2.4) has an attracting hyperbolic focus in V
and at most one (hyperbolically repelling) limit cycle in V , for each value (δ, b, c) ∈]0, δ0]×W .
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Theorem 2.4 will be proved in Section 3.3.
To study the degenerate case b = 1, we have to deal with higher order Melnikov theory

near the center and closed orbits on the blow-up locus, on one hand, and with the so-called
birth of canards near the singular cycle (see e.g. [7]), on the other. This is the topic of further
studies.

3 Proofs of Theorem 2.2–Theorem 2.4

3.1 Proof of Theorem 2.2

Let b0 > 0 and c0 > 0 be arbitrary positive constants, and (b, c) ∼ (b0, c0). System (2.4) has a
hyperbolic saddle at (x, y) = (0,−b) with a ratio of eigenvalues −δ̃2, for each δ̃ > 0 and δ̃ ∼ 0
(δ = δ̃2). This hyperbolic saddle originates from the hyperbolic singularity y = −b in the slow
dynamics (2.5). We also deal with a hyperbolic saddle at (x, y) = (1,−b), for all δ̃ > 0 and
δ̃ ∼ 0, with eigenvalues ρ1 = −(1 + b) < 0 and ρ2 = c− δ̃2(b + 1) > 0. Note that the connection
between the two saddles is unbroken, i.e. the orbit inside {y = −b} connects (x, y) = (0,−b) and
(x, y) = (1,−b), for all δ̃ > 0, δ̃ ∼ 0 and (b, c) ∼ (b0, c0). See Figure 3.1.

We define a difference map near the slow–fast 2-saddle limit periodic set Γ(b0,c0)
−b0

:

∆(x, δ̃, b, c) := ∆+(x, δ̃, b, c)− ∆−(x, δ̃, b, c), (δ̃, b, c) ∼ (0, b0, c0),

where ∆+ (resp. ∆−) is a transition map of (2.4) in forward time (resp. in backward time)
from S to T (see Figure 3.1). The horizontal section S is parametrized by x (we give a precise
definition of S later in this section) and the section T ⊂ {ȳ = 0} is defined in the family
directional chart of (2.6) and parametrized by x̄ ∼ 0, where (x̄, ȳ) are the coordinates of (2.7).
Thus, T is transverse to the connection {x̄ = 0}, on the blow-up locus, between the attracting
part of the critical curve and the repelling part of the critical curve (see Figure 2.1). It is
clear that limit cycles of (2.4), close to Γ(b0,c0)

−b0
in the Hausdorff sense, are given as zeros of the

difference map ∆. In the rest of this section, we show that ∆ has at most one zero in x (counting
multiplicity), for each fixed δ̃ > 0, δ̃ ∼ 0 and (b, c) ∼ (b0, c0).

(0,−b) (1,−b)

T

S

S1

∆1
∆2

∆+

Figure 3.1: Limit cycles of (2.4), Hausdorff close to Γ(b,c)
−b , can be studied as

zeros of a difference map ∆ := ∆+ − ∆− where ∆+ (resp. ∆− = ∆2 ◦ ∆1) is
a transition map defined by following the trajectories of (2.4) in forward time
(resp. in backward time) from the section S to the section T.

First, we study the transition map ∆−. We split up ∆− into two parts (see Figure 3.1):
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1. The Dulac map ∆1 near the hyperbolic saddle (x, y) = (1,−b) defined by following the
orbits of (2.4) in backward time from S to S1. We study the transition ∆1 by using results
from e.g. [17].

2. The transition map ∆2 defined by following the trajectories of (2.4) in backward time
from S1 to T. This transition map includes the passage near the critical curve with a
hyperbolic saddle in the slow dynamics and it has been studied in detail in [4] or [11].

The Dulac map ∆1, near the hyperbolic saddle (1,−b0), has the following form in the Ck-
normal form coordinates (see e.g. [2, 17]):

∆1(x, δ̃, b, c) = xρ(1 + Ψ(x, δ̃, b, c)), (3.1)

where x ∼ 0, x > 0, ρ = − ρ2
ρ1

= c
1+b − δ̃2 > 0, Ψ is a C∞-function for x > 0 and (δ̃, b, c) ∼

(0, b0, c0) and

∀n ∈N0 : lim
x→0

xn ∂nΨ
∂xn = 0, uniformly in (δ̃, b, c) ∼ (0, b0, c0). (3.2)

In the normal form coordinates, which we denote again by (x, y), the hyperbolic saddle cor-
responds to the origin (x, y) = (0, 0), S ⊂ {y = 1} is parametrized by x ∼ 0 and S1 ⊂ {x = 1}
is parametrized by y ∼ 0. Using (3.1) and (3.2), we obtain:

∂∆1

∂x
(x, δ̃, b, c) = xρ−1(ρ + Φ(x, δ̃, b, c)), (3.3)

where Φ has the property (3.2). On the other hand, the derivative of the transition map ∆2

has the following form (see [4] or [11, Section 3.8.5]):

∂∆2

∂y
(y, δ̃, b, c) =

1
δ̃4

exp
1
δ̃2

(∫ 1

α(y,δ̃,b,c)

−1 + δ̃2

s
ds + O(1)

)
=

1
δ̃4

exp
1
δ̃2

(
(1− δ̃2) ln α(y, δ̃, b, c) + O(1)

)
, (3.4)

where the section S1 is parametrized by the above normal form coordinate y ∼ 0, α is a Ck-
function in (y, δ̃, b, c) ∼ (0, 0, b0, c0), with ∂α

∂y > 0, and the O(1)-term in (3.4) is δ̃-regularly Ck

in (y, b, c), i.e. O(1) and all its derivatives up to order k w.r.t. (y, b, c) are continuous including
at δ̃ = 0. The integral in (3.4) is the divergence integral of (2.4) near the hyperbolic saddle
(0,−b0), multiplied by δ̃2 and calculated in Ck-normal form coordinates {v̇1 = δ̃2v1, v̇2 = −v2}
from {v2 = 1}, parametrized by v1 ∼ 0, to {v1 = 1}, parametrized by v2 ∼ 0. We supposed
that the orbit starting at a point on the section S1, parametrized by y ∼ 0, intersects the section
{v2 = 1} in a point with v1 = α(y, δ̃, b, c). Since the connection between (0,−b) and (1,−b) is
unbroken, we can write α = yα̃, where α̃ > 0.

Using (3.3) and (3.4), the derivative of ∆− w.r.t. x can be written as:

∂∆−
∂x

(x) =
∂∆2

∂y
(∆1(x))

∂∆1

∂x
(x)

=
1
δ̃4

exp
1
δ̃2

(
(1− δ̃2) ln α(∆1(x)) + δ̃2(ρ− 1) ln x + O(1) + δ̃2 ln(ρ + Φ(x))

)
(3.5)

where, for the sake of readability, we write x instead of (x, δ̃, b, c) and y instead of (y, δ̃, b, c).
Note that the term O(1) + δ̃2 ln(ρ + Φ(x)) in (3.5) is bounded. Since α = yα̃ and α̃ > 0, (3.1)
implies that:

α(∆1(x)) = xρ(1 + Ψ(x))α̃(∆1(x)),
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where (1+Ψ(x))α̃(∆1(x)) is strictly positive and bounded. Thus, (3.5) has the following form:

∂∆−
∂x

(x) =
1
δ̃4

exp
1
δ̃2

(
(ρ− δ̃2) ln x + O−(1)

)
(3.6)

for a bounded function O−(1).

Since the slow dynamics (2.5) is regular for y ≥ 0, we use e.g. [3] to find the derivative of
∆+ w.r.t. x:

∂∆+

∂x
(x) =

1
δ̃4

exp
1
δ̃2

O+(1) (3.7)

where O+(1) is δ̃-regularly Ck in (x, b, c), thus bounded. Let us introduce the analytic function
E(β1, β2) = exp β1−exp β2

β1−β2
> 0, β1 6= β2, and E(β1, β1) = exp β1. Combining (3.6) and (3.7) we

get the expression for the derivative of the difference map:

∂∆
∂x

(x) =
∂(∆+ − ∆−)

∂x
(x)

=
1
δ̃6

E(β1, β2)
(
− (ρ− δ̃2) ln x + O(1)

)
(3.8)

where O(1) is a bounded function, β1 = 1
δ̃2 O+(1) and β2 = 1

δ̃2

(
(ρ− δ̃2) ln x + O−(1)

)
. It thus

suffices to study zeros of the function

− (ρ− δ̃2) ln x + O(1) (3.9)

introduced in (3.8). Since −(ρ− δ̃2) ln x → +∞ as x → 0, (3.9) is strictly positive for x > 0,
x ∼ 0 and (δ̃, b, c) ∼ (0, b0, c0). Rolle’s theorem implies that the difference map ∆ has at most
one zero (counting multiplicity) w.r.t. x ∼ 0, x > 0, i.e. Γ(b0,c0)

−b0
can produce at most one limit

cycle. It the limit cycle exists, it is hyperbolic and repelling because (3.9) is strictly positive.
This completes the proof of Theorem 2.2.

3.2 Proof of Theorem 2.3

Let b0 be an arbitrary positive constant and c0 = 2b0 + 2. We suppose that C ⊂] − b0, 0[ is
an arbitrary compact set. We study zeros of the slow divergence integral I(y, b0, c0), given in
(2.10), w.r.t. y ∈ C, depending on the constant b0.

When (δ, b, c) = (0, b0, c0), using Darboux theory of integrability, we find the first in-
tegral of (2.4), divided by x (i.e. the first integral of the system {ẋ = (1 − b0)x − x2 − y,
ẏ = c0(y + b0)}):

H(x, y) = (2b0 + 2) arctan
x + b0√

y + b0
+ 2
√

y + b0, y > −b0.

Since H(0, y) = H(0, F(y)) for all y ∈]− b0, 0[, with F introduced in (2.10), it can be easily seen
that F is analytic on ]− b0, 0] and that the derivative of F has the following form:

F′(y) =
h(y)

h(F(y))
, y ∈]− b0, 0[, (3.10)
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where h(y) = y√
y+b0(b2

0+b0+y)
. Using (2.10) and (3.10), the derivative of the slow divergence

integral w.r.t. y can be written as:

∂I
∂y

(y, b0, c0)

= − 1
b0

(
F(y)F′(y)
F(y) + b0

− y
y + b0

)
=

h(y)
b0
√

F(y) + b0
√

y + b0

(√
F(y) + b0(b2

0 + b0 + y)−
√

y + b0(b2
0 + b0 + F(y))

)
. (3.11)

From (3.11) it follows that
{

∂I
∂y = 0

}
is equivalent to {L(y) = 0}, on ]− b0, 0[, where

L(y) =
√

F(y) + b0(b2
0 + b0 + y)−

√
y + b0(b2

0 + b0 + F(y)). (3.12)

On the other hand, (3.10) implies that {z = F(y)} is an orbit of the system {ẏ = h(z), ż =

h(y)}, where y, z > −b0. Multiplying this system by
√

y + b0(b2
0 + b0 + y)

√
z + b0(b2

0 + b0 + z)
> 0 yields: {

ẏ = z
√

y + b0(b2
0 + b0 + y)

ż = y
√

z + b0(b2
0 + b0 + z),

(3.13)

where y, z > −b0. System (3.13) has a hyperbolic saddle at the origin (y, z) = (0, 0) (see
Figure 3.2).

(−b0,−b0)

y

z

{z = F(y)}

Figure 3.2: Dynamics of system (3.13).

In the rest of this section, we show that there exists at most one intersection (counting multiplicity)
between {z = F(y)} and {L(y, z) = 0} in the region {−b0 < y < 0, z > 0} where the function L is
given by

L(y, z) =
√

z + b0(b2
0 + b0 + y)−

√
y + b0(b2

0 + b0 + z). (3.14)

(We replace F(y) by z in (3.12).) This will imply that ∂I
∂y has at most one zero (counting

multiplicity) on ] − b0, 0[. It can be easily seen that each solution of {L(y, z) = 0} satisfies
y = z or

z = b0
b0(b2

0 − 1)− y
y + b0

. (3.15)

When 0 < b0 < 1 (resp. b0 ≥ 1), we prove that there is one transversal intersection (resp.
there are no intersections) between the curve {z = F(y)} and the curve given by (3.15), in
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{−b0 < y < 0, z > 0} (see Figure 3.3). To prove it, first we calculate the number of contact
points between the curve {L(y, z) = 0} and the orbits of system (3.13). The contact points are
given by:

∇L(y, z) ·
(
z
√

y + b0(b2
0 + b0 + y), y

√
z + b0(b2

0 + b0 + z)
)
= 0 (3.16)

where L(y, z) = 0. Using (3.14), we have that

(i) 0 < b0 < 1 (ii) b0 = 1 (iii) b0 > 1

y

z

y

z

y

z

Figure 3.3: When 0 < b0 < 1, there exist one transversal intersection between
{z = F(y)} and {L(y, z) = 0} in the region {−b0 < y < 0, z > 0}. When b0 ≥ 1,
there are no intersections in {−b0 < y < 0, z > 0}.

∇L(y, z) =

(√
z + b0 −

1
2

b2
0 + b0 + z√

y + b0
,−
√

y + b0 +
1
2

b2
0 + b0 + y√

z + b0

)
,

and (3.16) becomes

(y− z)
(

1
2
(b2

0 + b0 + y)(b2
0 + b0 + z)− (b2

0 + b0)
√

y + b0
√

z + b0

)
= 0.

We focus on
1
2
(b2

0 + b0 + y)(b2
0 + b0 + z)− (b2

0 + b0)
√

y + b0
√

z + b0 = 0. (3.17)

When L(y, z) = 0, then (3.17) is equivalent to

y2 + b2
0(b

2
0 − 1) = 0.

We distinguish between two cases:

1. When 0 < b0 < 1, we have the following contact points between the curve {L(y, z) = 0}
and the orbits of (3.13): P1 =

(
− b0
√

1− b2
0, b0
√

1− b2
0
)
, P2 =

(
b0
√

1− b2
0,−b0

√
1− b2

0
)

and the line y = z. Since z in (3.15) tends to +∞ as y→ −b0, there exists at least one in-
tersection point between {z = F(y)} and {L(y, z)= 0} in the region {−b0< y < 0, z > 0}
(see Figure 3.3 (i)). If we suppose that there are at least 2 intersection points (counting
multiplicity) between {z = F(y)} and {L(y, z) = 0} in {−b0 < y < 0, z > 0}, then
there are at least 2 contact points in {−b0 < y < 0, z > 0}. This is in clear contradiction
with the fact that there is only one contact point (P1) in {−b0 < y < 0, z > 0}. Thus,
there exists one transversal intersection point between {z = F(y)} and {L(y, z) = 0}
in {−b0 < y < 0, z > 0}. This implies that ∂I

∂y has one simple zero on ]− b0, 0[. Using
Rolle’s theorem and the fact that I(0, b0, c0) = 0, we have that I(y, b0, c0) has at most one
simple zero on ]− b0, 0[. Thus, at most two limit cycles can be created.
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2. When b0 ≥ 1, the contact points are given by y = z. Suppose there is at least one
intersection point between {z = F(y)} and {L(y, z) = 0} in {−b0 < y < 0, z > 0}. Then
there exists at least one contact point between the curve {L(y, z) = 0} and the orbits of
system (3.13) in {−b0 < y < 0, z > 0}, which is a contradiction and proves that there
are no intersection points. See Figure 3.3 (ii)–(iii). This implies that ∂I

∂y (y, b0, c0) has no
zeros on ]− b0, 0[. Using Rolle’s theorem and I(0, b0, c0) = 0, we have that I(y, b0, c0) is
strictly positive on ]− b0, 0[. Thus, at most one (hyperbolic and repelling) limit cycle can
be created.

3.3 Proof of Theorem 2.4

Let b0 > 0, b0 6= 1 and c0 > 0. We bring (2.4), near the origin (x, y) = (0, 0), with δ = δ̃2, to
a normal form for a slow–fast Hopf point of codimension 1 studied in e.g. [12]. (We suppose
that (δ̃, b, c) ∼ (0, b0, c0).) The change of coordinates x̄ = −δ̃2b + (c− δ̃2)x, with (x, y) ∼ (0, 0),
changes (2.4) to {

˙̄x = (α0 − y)x̄ + δ̃2(δ̃β0 − by) + γ0 x̄2 − 1
(c−δ̃2)2 x̄3

ẏ = (y + b)x̄,
(3.18)

where

α0 = 2δ̃2b
1− b
c− δ̃2

− 3δ̃4b2

(c− δ̃2)2
, β0 = δ̃b2 1− b

c− δ̃2
− δ̃3b3

(c− δ̃2)2
, γ0 =

1− b
c− δ̃2

− 3δ̃2b
(c− δ̃2)2

.

After the coordinate change X = (y + b)x̄, for (x̄, y) ∼ (0, 0), (3.18) becomes{
Ẋ = (α0 − y)X + δ̃2(δ̃bβ0 − (b2 − δ̃β0)y− by2)+ 1+γ0

y+b X2 − 1
(c−δ̃2)2(y+b)2 X3

ẏ = X,
(3.19)

where α0, β0 and γ0 are given in (3.18). The translation Y = y− α0 brings (3.19) to
Ẋ = −YX + δ̃2

((
δ̃bβ0 − α0(b2 − δ̃β0)− bα2

0
)
− (b2 − δ̃β0 + 2bα0)Y− bY2

)
+ 1+γ0

Y+α0+b X2 − 1
(c−δ̃2)2(Y+α0+b)2 X3

Ẏ = X.

(3.20)

After rescaling (X, Y) =
(
(b2 − δ̃β0 + 2bα0)X̃,

√
b2 − δ̃β0 + 2bα0Ỹ

)
and dividing by a positive

function
√

b2 − δ̃β0 + 2bα0, (3.20) changes into ˙̃X = −ỸX̃ + δ̃2
(

β̃0 − Ỹ−
(
1 + O(δ̃2)

)
Ỹ2
)
+
(
1 + 1−b

c + O(δ̃2, X̃, Ỹ)
)
X̃2

˙̃Y = X̃,

where

β̃0 =
δ̃bβ0 − α0(b2 − δ̃β0)− bα2

0

(b2 − δ̃β0 + 2bα0)
3
2

= δ̃2
(

b− 1
c

+ O(δ̃2)

)
=: δ̃β̄0. (3.21)

If we write (x̃, ỹ) = (Ỹ, X̃), we get: ˙̃x = ỹ
˙̃y = −x̃ỹ + δ̃2

(
δ̃β̄0 − x̃−

(
1 + O(δ̃2)

)
x̃2
)
+
(
1 + 1−b

c + O(δ̃2, x̃, ỹ)
)
ỹ2,

(3.22)
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where β̄0 = δ̃
( b−1

c + O(δ̃2)
)
∼ 0 is given in (3.21). When 0 < b0 < 1 (resp. b0 > 1), it can be

easily seen that (3.22) has a repelling hyperbolic focus (resp. an attracting hyperbolic focus)
near the origin (x̃, ỹ) = (0, 0), for each (δ̃, b, c) ∼ (0, b0, c0) and δ̃ > 0.

We write the O(ỹ2)-term in (3.22) as O(ỹ2) = ỹ2G(x̃, ỹ, δ̃, b, c), where G is analytic and
G(0, 0, 0, b0, c0) = 1+ 1−b0

c0
. We denote by X(δ̃,b,c) the system { ˙̃x = 1, ˙̃y = −x̃ + ỹG(x̃, ỹ, δ̃, b, c)}.

Let ỹ = h(x̃; ŷ, δ̃, b, c), with h analytic and h(0; ŷ, δ̃, b, c) = ŷ, be the solutions of

dỹ
dx̃

= −x̃ + ỹG(x̃, ỹ, δ̃, b, c). (3.23)

Using (3.23), we have h(0; 0, δ̃, b, c) = ∂h
∂x̃ (0; 0, δ̃, b, c) = 0, ∂2h

∂x̃2 (0; 0, δ̃, b, c) = −1, ∂3h
∂x̃3 (0; 0, δ̃, b, c) =

−G(0, 0, δ̃, b, c), ∂h
∂ŷ (0; 0, δ̃, b, c) = 1 and ∂2h

∂x̃∂ŷ (0; 0, δ̃, b, c) = G(0, 0, δ̃, b, c). The coordinate change

ỹ = h(x̃; ŷ, δ̃, b, c) brings X(δ̃,b,c) to the box flow 1 ∂
∂x̃ , and consequently the vector field (3.22)

becomes  ˙̃x = h(x̃; ŷ, δ̃, b, c). ∂h
∂ŷ (x̃; ŷ, δ̃, b, c)

˙̂y = δ̃2
(

δ̃β̄0 − x̃−
(
1 + O(δ̃2)

)
x̃2
)

,
(3.24)

after multiplication by ∂h
∂ŷ (x̃; ŷ, δ̃, b, c) > 0. Using the properties of h, (3.24) can be written as ˙̃x = ŷh1(x̃, ŷ, δ̃, b, c) + x̃2h2(x̃, ŷ, δ̃, b, c)

˙̂y = δ̃2
(

δ̃β̄0 − x̃−
(
1 + O(δ̃2)

)
x̃2
)

,

with h1 = 1+O(x̃, ŷ), h2 = − 1
2 +O(x̃, ŷ), ∂h1

∂x̃ (0, 0, δ̃, b, c) = 2G(0, 0, δ̃, b, c) and ∂h2
∂x̃ (0, 0, δ̃, b, c) =

− 2
3 G(0, 0, δ̃, b, c). After rescaling (x̃, ŷ) = (2x, 2y) and multiplication by −1, we finally get the

desired normal form for the so-called non-degenerate canard point (see (3.3) of [12]):ẋ = −yH1(x, y, δ̃, b, c) + x2H2(x, y, δ̃, b, c)

ẏ = δ̃2
(

xH3(x, y, δ̃, b, c)− λ
)

,
(3.25)

with λ = δ̃β̄0
2 , Hk = 1 + O(x, y), k = 1, 2, 3, ∂H1

∂x (0, 0, 0, b0, c0) = 4G(0, 0, 0, b0, c0),
∂H2
∂x (0, 0, 0, b0, c0) =

8
3 G(0, 0, 0, b0, c0) and ∂H3

∂x (0, 0, 0, b0, c0) = 2. Following [12], the sign of

A = −∂H1

∂x
(0, 0, 0, b0, c0) + 3

∂H2

∂x
(0, 0, 0, b0, c0)− 2

∂H3

∂x
(0, 0, 0, b0, c0) = 4

1− b0

c0

determines the dynamics of (3.25) near the origin (x, y) = (0, 0). When 0 < b0 < 1 (i.e. A > 0),
then (3.25) has at most one (hyperbolically repelling) limit cycle in a fixed neighborhood of
(x, y) = (0, 0), for each (δ̃, b, c) ∼ (0, b0, c0). When the limit cycle exists, it is generated by a
subcritical Hopf bifurcation at λ = 0, taking λ ∼ 0 as independent (breaking) parameter (see
Theorem 4.2 of [12]). After changing time, we get Theorem 2.4. 1. When b0 > 1 (i.e. A < 0),
then (3.25) has at most one (hyperbolically attracting) limit cycle in a fixed neighborhood
of (x, y) = (0, 0), for each (δ̃, b, c) ∼ (0, b0, c0). If the limit cycle exists, it is created by a
supercritical Hopf bifurcation at λ = 0, taking λ ∼ 0 as independent parameter (see Theorem
4.1 of [12]). After changing time, this implies Theorem 2.4. 2.

Remark 3.1. Note that the obtained result (at most one small limit cycle when b0 6= 1) is
compatible with results of [8, 10] applied to the normal form (3.22). In the Liénard plane
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(ỹ→ ỹ− 1
2 x̃2), (3.22) becomes ˙̃x = ỹ− 1

2 x̃2

˙̃y = δ̃2
(

δ̃β̄0 − x̃−
(
1 + O(δ̃2)

)
x̃2
)
+
(
1 + 1−b

c + O(δ̃2, x̃, ỹ− 1
2 x̃2)

)
(ỹ− 1

2 x̃2)2.
(3.26)

After rescaling (x̃, ỹ) = (δ̃x, δ̃2y), with (x, y) kept in a large compact set, and after division
by δ̃ > 0, (3.26) becomes {ẋ = y− 1

2 x2, ẏ = β̄0 − x− (1 + O(δ̃2))δ̃x2 + (1 + 1−b
c + O(δ̃))δ̃(y−

1
2 x2)2}. When δ̃ = 0, this system has the center at the origin (x, y) = (0, 0), an integrating fac-
tor−e−y and the functionH(x, y) = e−y(y− 1

2 x2 + 1) as first integral. The center is represented
by L1 := {H(x, y) = 1} and we denote the closed level curves of H by Lh, where h ∈]0, 1[. We
write J0(h) =

∫
Lh

e−ydx and J1(h) = −
∫

Lh
e−yx2dx+(1+ 1−b

c )
∫

Lh
e−y(y− 1

2 x2)2dx, for h ∈]0, 1],
where Lh is oriented counter-clockwise. Since

∫
Lh

e−y(y− 1
2 x2)2dx =

∫
Lh

e−yx2dx (see [10]), we

have that J1(h) = 1−b
c

∫
Lh

e−yx2dx, and based on [8] and b0 6= 1, it can be proved (see[10]) that

the system { d
dh J0, d

dh J1} of analytic functions is a strict Chebyshev system on [h0, 1] of degree 1,
for all small h0 > 0 and (b, c) ∼ (b0, c0), i.e. at most one limit cycle can be created.
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