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Abstract. We consider a 2-dimensional ordinary differential equation (ODE) depending
on a parameter ε. If the ODE is autonomous the supercritical Andronov–Hopf bifurca-
tion theory gives sufficient conditions for the genesis of a repeller–attractor pair, made
up by a critical point and a stable limit cycle respectively. We give assumptions that
enable us to reproduce the analogous phenomenon in a non-autonomous context, as-
suming that the coefficients of the system are subject to fast oscillations, and have very
weak recurrence properties, e.g. they are almost periodic (in fact we just need that the
associated base flow is uniquely ergodic). In this context the critical point is replaced
by a trajectory which is a copy of the base and the limit cycle by an integral manifold.
The dynamics inside the attractor becomes much richer and, if one asks for stronger
recurrence assumptions, e.g. the coefficients are quasi periodic, it can be (partially) an-
alyzed by the methods of [M. Franca, R. Johnson, V. Muñoz-Villarragut, Discrete Contin.
Dyn. Syst. Ser. S 9(2016), No. 4, 1119–1148].

The problem is in fact studied as a two parameters problem: we use ε to describe
the size of the perturbation and 1/µ to describe the speed of oscillations, but the results
allows to set ε = µ.
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1 Introduction

In this paper, along with [12, 13], we aim to give some insight to the rising field of bifurcation
theory for non-autonomous systems, which nowadays is a well investigated topic, see e.g.
[10, 11, 19, 21–23, 27, 28, 31, 32]. In particular in [21, 23, 27, 30] the generalization to a non-
autonomous context of transcritical, saddle-node and pitchfork bifurcation was considered. In
fact in [30, Section 7.3] Rasmussen considered also the case of the Andronov–Hopf bifurcation
(AH bifurcation for short) assuming that the system is asymptotically autonomous. In [12] we
have already analyzed the effect of a small non-autonomous perturbation on an autonomous
system exhibiting an AH bifurcation: we mainly used the methods of [32], and we showed
the existence of an exponentially stable integral manifold, which plays the role of the stable
limit cycle of the autonomous case. Then we analyzed the dynamics on the stable limit cycle,
motivated by [6, 7, 19]. In [13] we considered the effect of a fast varying perturbation on
the typical one-dimensional bifurcation patterns: transcritical, saddle-node, pitchfork. In that
case the analysis was built up on the change of variables constructed in [1, 2]. In this article
we focus on non autonomous systems subject to fast oscillations, assuming that the average
undergoes to AH bifurcation, and again we mainly rely on [12, 32] for the construction of the
asymptotically stable integral manifold, and on [12] for the analysis of the dynamics in it.

Let us briefly recall what an AH bifurcation is, see [12, 25] for details. In the supercritical
case one looks for conditions sufficient to guarantee that system

ẋ :=
dx
dt

= f (x, ε) , t ∈ R , x ∈ R2 (1.1)

where f (0, ε) ≡ 0, f sufficiently smooth, has the following features

a) the origin x = 0 is an exponentially asymptotically stable critical point of (1.1) for ε < 0;

b) there is an exponentially asymptotically orbitally stable periodic solution of (1.1) for ε > 0,
whose graph is denoted by Γ,

see [12] for more details.
Our purpose is to reproduce a pattern with characteristics analogous to a), b) for an equa-

tion of the form:

ẋ = f (x, ε) + εg
(

t
ε

, x, ε

)
t ∈ R , x ∈ R2, (1.2)

where g is bounded, smooth and it has very weak recurrence properties.
Problems with rapid oscillations, besides their intrinsic mathematical interest, have a great

relevance in applications. In fact it is well known that when the coefficients of a mechanical
system are subject to a 0 average oscillation, this may alter in a substantial way the stability of
the system. Some examples in this directions are given by, but non limited to, the phenomenon
of stabilization of a planar pendulum via vertical oscillations [3], the elimination of a Van der
Pol oscillation, and the large-scale alteration of a stability diagram in a catalytic reactor [1, 2].

As already pointed out in [12] the very concept of AH bifurcation itself is not immediately
clear in a non-autonomous context: this in fact happens for all the types of bifurcations.
Roughly speaking critical points are likely to be replaced by trajectories which are copies of
the base, i.e. they have the same recurrence properties as the function g (e.g. periodic of period
εT if g is periodic of period T), while the graph of a periodic trajectory should be replaced
by a t-dependent attracting integral manifold Wε(t). Further, the analysis of the dynamics
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on the integral manifold Wε(t) will become rather problematic, rarely resulting in the simple
“addition of a frequency” to the frequency moduli of g.

Our scheme is to go from mild requirements which allow to reprove the existence of an
attractor–repeller pair, to more stringent ones, which enable us to give some enlight on the
dynamics of the “attractor” i.e. the set that plays the role of the orbitally stable limit cycle.
We recall that the dynamics of the “attractor” then organizes the long time behavior of all the
trajectories in a neighborhood of the origin (apart from the one in the repeller).

We assume that the autonomous system (1.1) exhibits a AH bifurcation and that g has
0 time-average, see Section 2 for details. The starting point of our analysis is the classical
Bebutov hull construction which allows to apply the well developed machinery of skew-
product semiflows, see e.g. [10, 19, 22, 24], see also [12, 13] and Section 2 of this article. We
start by assuming that the dynamics in the base is uniquely ergodic (see Definition 2.1) and
that g(t, 0, ε) = O(

√
ε): these conditions permit us to prove the existence of a repeller which

is a copy of the base (Proposition 3.8), and of a positively invariant annulus A. The annulus
A contains a time dependent set Wε(t) which is a set topologically equivalent to S1 (See
Definition 3.1), which, roughly speaking, “plays the role of the attractor”. This is the content
of Proposition 3.9, which is based on Wazewski’s principle and a topological lemma borrowed
from [29].

Afterwards we ask for stronger conditions to gain a better insight on the dynamics: we
require that g(t, 0, ε, µ) ≡ 0 so that the repeller is the origin and that g has stronger recurrence
properties, i.e. the base flow has non-positive Lyapunov exponents, e.g. g is almost periodic, cf
Remark 3.13. Hence in Theorem 3.12, using the methods of [32], we show that Wε(t) is indeed
an exponentially stable integral manifold, lying o(

√
ε) close to Γ. Namely for any fixed t ∈ R,

Wε(t) is the graph of a continuous function vt(θ, ε) : S1 × [0, ε0] → R2 where S1 = R/[0, 2π].
In fact vt is of class Cr if f ∈ Cr and g ∈ Cr+1 when (θ, ε) ∈ S1 × (0, ε0] but we just have
continuity when ε = 0. Obviously, if g ≡ 0, then Wε(t) ≡ Γ for any t ∈ R. However, in order
to have some hints on the dynamics taking place in Wε(t), we need the integral manifold
Wε(t) to depend smoothly on t as well. This is obtained assuming, e.g., that the function g is
quasi periodic, and it is proved in Theorem 3.14, which is an adaption of [12, Theorem 3.9],
which is in fact based on [20, 26]. Then, following [12, §4], it will be possible to have some
clue on the dynamics in the integral manifold Wε(t) using the concept of suspension flow and
circle extension of the base flow.

The whole argument is carried on embedding (1.2) in the following two parameters prob-
lem

dx
dt

= f (x, ε) + εsg
(

t
µ

, x, ε, µ

)
t ∈ R , x ∈ R2 . (1.3)

Obviously (1.3) reduces to (1.2) by setting ε = µ and s = 1. In (1.3) we distinguish between the
parameter ε determining the “size” of the perturbation, and a parameter µ which controls “the
speed of oscillation” of the non-autonomous perturbation. This framework, besides providing
slightly more general results, is essential in simplifying the argument of our proof, helping
us to introduce exponential dichotomy tools and to gain enough hyperbolicity to apply the
methods of [26, 32].

Setting µ = 1 we recover the regular perturbation problem discussed in [12] (which how-
ever is not contained in the present article since we always need µ � 1). In fact, in [12]
the existence of the AH pattern, and in particular the existence and the smoothness of the
exponentially stable integral manifold Wε(t), has been obtained just in the case s > 1 (and
µ = 1). Here, in this apparently more difficult setting, quite surprisingly, we may relax the
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assumption and allow s = 1 in (1.3) and study

dx
dt

= f (x, ε) + εg
(

t
µ

, x, ε, µ

)
t ∈ R , x ∈ R2 . (1.4)

Such a gain is obtained by applying the averaging method developed by Fink in [10], and
adapted in [22]. As we will see in section 2, the method consists in the construction of a
change of variables which allows to recast the problem in such a way that the term εsg in
(1.3) is replaced by a term of the form εsζ(µ)g̃, where g̃ is bounded and ζ(µ) is a continuous
monotone increasing function such that ζ(0) = 0. We stress that we do not have any control
on how small ζ(µ) in fact is: it might go to 0 even as a logarithm, see [12, Appendix B].
However, even setting s = 1 and ε = µ as in (1.2), we can regard the term εsζ(µ)g as a o(ε)
perturbation of f : this is enough to apply our argument and to built up the AH pattern.

On the other hand this approach has an important drawback. We are able to produce the
AH pattern for (1.3) when 0 < ε ≤ ε0 and 0 < µ ≤ µ0, where ε0 = ε0(s) > 0. The integral
manifold Wµ(t) is of size O(

√
ε), so the whole phenomenon is hard to be detected if ε0 > 0

is too small. If we set s = 1 and ε = µ as in (1.2), the whole argument works as long as the
terms of order O(ζ(ε)) are negligible with respect to

√
ζ(ε): this may result in asking for very

small (unprecisely small) values of ε0, and correspondingly for very small integral manifold
Wµ(t) (of size O(

√
ε)) which might become invisible in real applications (indistinguishable

from the repeller, which we usually assume to be the origin).
To make our argument more robust one could choose s > 1, e.g. s = 3

2 : this will result
in neglecting terms of order O(εs−1ζ(µ)) when compared to

√
ζ(µ), and at the end should

allow for “visible ε0” even when setting µ = ε, see Section 3.3 and in particular Remark 3.18
and Corollary 3.17.

The introduction of a second parameter µ describing the speed of variation of the perturba-
tion terms is of help also in the investigation of the dynamical properties of the stable integral
manifold Wµ(t), using the methods of [12, §4]. One might expect that if g is almost periodic
the dynamics on M∗µ = ∪t∈R(Wµ(t)× {t}) will be obtained simply by adding a frequency to
the frequency modulus of g. This is not always the case due to possible resonances which are
difficult to be avoided.

As pointed out in [12, §4], which was motivated by [19], in this context a key role is played
by the bounded mean motion property, see Definition 5.2: if the base flow is quasi-periodic
(i.e. if g is quasi periodic in t), and the integral manifold actually has the bounded mean
motion property (e.g. if g is periodic in t), the resulting flow will be either a quasi-periodic
flow obtained by adding a frequency to the frequency modulus of g, or it will be a Cantorus
and laminates in almost periodic minimal flows. However in general, due to resonances, the
resulting flow may be even weakly mixing [8] or mixing [9], and intermittency phenomena
have to be expected. In fact for ε > 0 and µ = 0 the periodic trajectory of the autonomous
system will have period, say, T(ε), while for µ > 0, even in the simplest case, i.e. if g is 2π-
periodic, the forcing term will be of period 2πµ. Hence we cannot hope for the flow on Mµ

to be simply quasi-periodic, for the whole range 0 < µ ≤ µ0, but just for specific sequences of
values, far enough from resonances.

The structure of the article is as follows. In Section 2 we introduce the language of skew-
product semi-flow, and Fink averaging in infinite intervals. In Section 3 we introduce some
definitions and we state the results: in Section 3.1 the ones with weaker assumptions which
regards the existence of the repeller and of the positively invariant annulus, in Section 3.2 the
existence and the smoothness of the asymptotically stable integral manifold. Then in Section
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3.3 we give some Remarks on the problem of the robustness of the pattern and smallness of
the parameters. In Section 4 we carry on the proofs of the main results. In Section 5 we recall
some of the results described in [12] concerning the dynamics on Wµ(t), for convenience of
the reader: they have been stated for the regular perturbation case and are trivially adapted to
this context. Finally in the Appendix we briefly discuss the change of variables developed by
Bellman et al. in [1, 2], which allows to show a shift of the bifurcation value for the averaged
system. In fact this analysis was started in [13] with the example of a Van der Pol oscillator,
here it is extended to the general case of AH bifurcation.

2 Preliminaries

In this section we briefly explain how we can translate the non-autonomous equation (1.2) in
the language of skew product flows. Then we apply the infinite interval averaging technique
developed by Fink and Hale [10,17] (see also [22] and Remark 2.2 below) to see how a system
with fast varying coefficients can be seen as a perturbation of its average. In the whole section
we will be rather sketchy, remanding the interested reader to [13, §2] where a more detailed
explanation can be found.

Let P be a topological space. A flow on P is a family {φt | t ∈ R} of homeomorphisms of
P with the following properties:

• φ0(p) = p for all p ∈ P;

• φt ◦ φs = φt+s for all t, s ∈ R;

• φ : R× P→ P: (t, p)→ φt(p) is continuous.

Suppose that P is a compact metric space, and let {φt} be a flow on P.
Let us consider a differential system with fast varying dependence i.e.

dx
dt

:= ẋ = f

(
t
µ

, x, µ

)
t ∈ R , x ∈ R2, (2.1)

where f is as smooth as needed and µ > 0 is small, or equivalently

dx
dτ

:= x′ = µf(τ, x, µ) τ ∈ R , x ∈ R2 . (2.2)

Following [13, §2] let l = (l1, l2) ∈ N2 be such that 0 ≤ l1, l2 ≤ l1 + l2 = |l| ≤ r. One
requires that f, together with all its partial derivatives Dl

xf = Dl1
x1 , Dl2

x2f of order |l| ≤ r, are
uniformly continuous on sets of the form R× K where K ⊂ R2 is compact. Then there exist:

(i) a compact metric space P with a flow {φt};

(ii) a continuous function f∗ : P × R2 → R2 such that Dl
xf∗ : P × R2 → R2 exists and is

continuous for each l = (l1, l2) ∈N2 with |l| ≤ r;

(iii) a point p∗ ∈ P such that f(t, x, µ) = f∗(φt(p∗), x, µ) for all t ∈ R, x ∈ R2.

The flow {φt} is induced by the translation in t, and the points of P are actually functions
p(t, x) = limn→∞ f(t + tn, x, µ) for appropriate sequences {tn} ⊂ R. Here the limit is taken in
the compact-open topology on R×R2. One usually abuses notation at this point and writes
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f instead of f∗ (but not p for p∗). This way equation (2.2) (and consequently (2.1)) has been
embedded into the family of differential equations

x′ = µf(φt(p), x, µ) p ∈ P, x ∈ R2, 0 < µ ≤ µ0 (2.2p)

where (2.2) coincides with (2.2p∗).
Suppose that each equation (2.2p) admits a unique global solution x(t; x0, p) for each initial

value x0 ∈ Rn. Then the family of homeomorphisms

ψt : P×R2 → P×R2 : (p, x0)→ (φt(p), x(t; x0, p))

defines a flow on P×R2. One speaks of a skew-product flow because the first factor does not
depend on x0, and the flow (P, {φt}) is usually referred to as the base.

Let 4 denote the the usual symmetric difference of sets, i.e. A4B = (A\B) ∪ (B\A).
A regular Borel probability measure ξ on P is said to be φt-invariant if ξ(φt(B)) = ξ(B) for
each Borel set B ⊂ P and for each t ∈ R. An invariant measure is said to be {φt}-ergodic if,
in addition, the following indecomposibility condition holds: if B ⊂ P is a Borel set, and if
ξ(B4φt(B)) = 0 for each t ∈ R, then either ξ(B) = 0 or ξ(B) = 1.

We recall that any flow on P admits an ergodic invariant measure, but such a measure is
not always unique.

Definition 2.1. We say that (P, {φt}) is uniquely ergodic if it admits a unique ergodic invari-
ant measure.

Following [13] page 221–222 (which is in fact based on [22], [10, Lemma 14.1]), if (P, {φt})
is uniquely ergodic, and ξ is its unique invariant measure, we can fix p ∈ P and set fµ(x) =∫

P f(p, x)dξ(p), to define

Fµ(0, x) :=F(p, x, µ) =
∫ 0

−∞
eµs {f(φs(p), x, µ)− fµ(x)

}
ds,

Fµ(t, x) :=F(φt(p), x, µ) = e−µt
∫ t

−∞
eµs {f(φs(p), x, µ)− fµ(x)

}
ds.

(2.3)

From [13, Proposition 2.2] for all p ∈ P, x ∈ R2, and for each l ∈N2 with |l| ≤ r we find

|µDl
xFµ(t, x)| ≤ ζ(µ) , (2.4)

where ζ(µ) is a continuous increasing function such that ζ(0) = 0. Of course Fµ depends on
p as well but the estimate (2.4) is uniform in P (since it is compact). We emphasize that ζ(µ)

need not tend to zero at a prescribed rate, e.g. we cannot say ζ(µ) = cµs for some s > 0, see
[13, Appendix B].

For each fixed p ∈ P, and |x| ≤ 1, 0 < µ ≤ µ0, we apply the following C∞ (invertible)
change of variables, cf. [13, Proposition 2.3],

x = y + µFµ(t, y) (2.5)

and we pass from (2.2p) to the following:(
I + µ

∂Fµ

∂y

)
y′ = µ

{
fµ(y) + µFµ(t, y) + f(φt(p), x, µ)− f(φt(p), y, µ)

}
. (2.6)



Hopf bifurcation with rapidly varying coefficients 7

Then, using (2.4) and the expansion

f(p, x, µ)− f(p, y, µ) =
∂fµ

∂y
(p, y)µFµ + O(|µFµ|2) (2.7)

we recast (2.6), hence (2.2p), as

y′ = µ
{
fµ(y) + ζ(µ)A1(φt(p), y) + R(φt(p), y)

}
(2.8)

where R(φt(p), y) = o(ζ(µ)) uniformly in all the variables and A1 is bounded and explicitly
known, i.e.

ζ(µ)A1(φt(p), y) := −µ
∂Fµ(t, y)

∂y
fµ(y) +

(
I +

∂fµ

∂y
(φt(p), y)

)
µFµ(t, y). (2.9)

This way we have rewritten (2.1) as a ζ(µ) small non-autonomous perturbation of its
averaged autonomous equation ẋ = fµ(x), i.e. as a system of the form

ẏ = fµ(y) + ζ(µ)g̃(φ t
µ
(p), y, µ) (2.10)

where the function g̃ is bounded in all its components. Hence we can apply the techniques
developed in [12] for small non-autonomous perturbations adapting them to a context of
rapidly varying coefficients.

Remark 2.2. Notice that, passing from (2.1) to (2.8), we have lost one order of smoothness due
to (2.7), i.e. if f ∈ Cr+1 then fµ ∈ Cr+1 but g̃ ∈ Cr. Further we need at least f ∈ Cr+1, r ≥ 0,
to infer R(φt(p), y) = o(ζ(µ)); moreover if r ≥ 1 we get R(φt(p), y) = O(ζ(µ))2. In fact if f is
smooth enough we can proceed to expand the term R further to any order, getting explicitly
known terms.

We emphasize that, from [11, Propositions 2.5 and 2.6], if x∗ is such that the solution
x(t; x∗, p, µ) of (2.1) and the solution x0(t; x∗, p) of its autonomous averaged equation both
exist for any t ∈ R and stay in the ball of radius 1, then

lim
µ→0+

x(t; x∗, p, µ) = x0(t; x∗, p)

along with all its derivative with respect to x, see [13, Proposition 2.4].
We introduce the following notation which is in force in the whole paper: we denote by

x(t, T; Q) the trajectory of (2.1) which is in Q at t = T, and by x(t, p; Q) the trajectory of (2.2p)
which is in Q at t = 0. We use analogous notation for all the equations to be introduced in the
article. Notice that by construction x(t, T; Q) = x(t− T, φT(p) ; Q), for any t, T ∈ R.

3 Statement of the main results

In Sections 3.1, 3.2 we state the main results of the article, and we consider (1.3); so we make
use of two small nonnegative parameters: ε which measures the size of the perturbations, and
µ which measures the rapidity of the variation of the coefficients. Further we always assume
s ≥ 1 without further mentioning, i.e. the non-autonomous perturbation is of the same size
or smaller than the autonomous perturbation giving rise to AH bifurcation for the averaged
system. Then in Section 3.3 we see that we can set s = 1 and ε = µ, i.e. we consider (1.2),
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so that we can regard the whole problem as a 1-parameter system, and restate all the results
in this setting, see Corollary 3.17. At this stage we prefer to keep them distinguished: this
will help us in the proofs and allows for slightly more general statements; further it also to
underlines their different “physical” meaning. In Section 3.3 we also discuss the dependence
of the robustness of the results on the choice of s ≥ 1. All the proofs are postponed to
Section 4.

We begin by recalling some standard facts concerning the AH bifurcation pattern. Let us
consider the equation

ẋ = f (x, ε) = L(ε)x + N(x, ε) , N(x, ε) = O(x2) (3.1)

and assume f (0, ε) = 0 (i.e in (1.3) we set g ≡ 0). Following [12] which is based on [18, 25],
we can recast (3.1) in its normal form, i.e.

f (x, ε) =

(
ε −1
1 ε

)
x−

(
1 v(ε)

−v(ε) 1

)
|x|2x + W(x, ε) (3.2)

where W(x, ε) = O(|x|5). Notice that passing from (3.1) to (3.2) we have made a polynomial
change of variables (see [12] or [18] for more details), but, abusing the notation, the unknown
is still denoted by x.

Passing to polar coordinates (r, θ) it is easy to see that, for ε > 0, (3.2) admits a stable limit
cycle Γ which can be written in the form

Γ = {Γ(θ) = (rΓ(θ), θ) | 0 ≤ θ ≤ 2π} rΓ(θ) =
√

ε + O(ε)

where r(·) is a smooth 2π-periodic function. In fact, for ε > 0, the dynamics in a small
neighborhood of the origin is ruled by the presence of the attractor–repeller pair made up by
Γ and the origin, which are respectively an asymptotically stable limit cycle and an unstable
focus.

Now we switch on the non-autonomous perturbation, and we turn to consider system (1.3).
We go back to the notation of Section 2 so, using Fink’s averaging techniques we introduce a
base flow (P, {φt}) describing the dynamics of the coefficients, and we embed (1.3) in a family
of type (2.2p) as follows

ẋ = f (x, ε) + εsg
(

φ t
µ
(p), x, ε, µ

)
t ∈ R , x ∈ R2, (3.3)

where f ∈ Cr and g ∈ Cr+1 in x, ε, µ and r ≥ 4, uniformly with respect to p ∈ P (smoothness
requirement might be relaxed but they are not the main issue in this paper). Notice that here
and afterwards, abusing the notation, g stands for g∗.

In the whole article we assume that P is a compact metric space and the base flow
(P, {φt}) is uniquely ergodic, see Definitions 2.1: this is a very weak recurrence property
on the t dependence of the original function g(t, x, ε, µ), and it is satisfied, e.g., if g(t, x, ε, µ)

is almost periodic, see [12] or [10] for more details. As we said in the Introduction, more
stringent recurrence properties will be required in some results: this way we will get some
insight on the topological and dynamical characteristics of the set which replaces the stable
limit cycle of the classical autonomous AH bifurcation. Further we will always assume that
all the trajectories are continuable for any t ∈ R, since we are just interested in local
dynamics.

Then we are in the position to apply the Fink’s averaging procedure developed in section 2
and we pass to the new variable y, see (2.5); hence we find a monotone increasing continuous
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function ζ(µ) such that ζ(0) = 0, so that (3.3) can be recast as an equation of type (2.8). We
assume w.l.o.g. that the time-average of g and its derivative are 0. This amounts to ask that
they are already contained in the autonomous term f , which we assume to be in its normal
form (3.2). So we rewrite (3.3) as follows

ẏ = f (y, ε) + εsζ(µ)g̃
(

φ t
µ
(p), y, ε, µ

)
. (3.4)

and g̃ is just Cr in (y, ε, µ) uniformly for p ∈ P, see Remark 2.2. This way we have gained
something in the smallness of the non-autonomous perturbation. The drawback is that we
have lost one order of smoothness and that in fact we cannot precisely say how small ζ(µ) is,
again see [13, Appendix B].

We collect here some dynamical definitions.

Definition 3.1. In the whole paper we say that W ⊂ (R2 \ {(0, 0)}) is topologically equivalent
to S1 if there is an homotopy between W and S1 in R2 \ {(0, 0)}. More precisely if there is a
continuous function H : (t, x) ∈ [0, 1]× (R2 \ {(0, 0)})→ (R2 \ {(0, 0)}) such that H(0, x) = x
for any x ∈W and H(1, y) = y for any y ∈ S1.

Roughly speaking W is topologically equivalent to S1 if it can be continuously deformed
into S1, so it may be thick in some parts or everywhere.

Definition 3.2. A function f is almost periodic if every sequence { f (Tn + t)} of translations
of f has a subsequence that converges uniformly for t ∈ R.

Definition 3.3. Let P be a compact metric space and (P, {φt}) be a flow. We say that (P, {φt})
is (Bohr) almost periodic if there is a metric d on P, which is compatible with the topology on
P, such that

d(φt(p1), φt(p2)) = d(p1, p2).

Definition 3.4. We say that a surface M in R×R2 is an integral manifold for

ẋ = f(t, x) (3.5)

if and only if, for any (T, x0) ∈ M, the solution x(t, T; x0) which is in x0 at t = T is such that
(t, x(t, T; x0)) ∈ M for all t ∈ R.

The existence of an integral manifold M ⊂ (R×R2) in the (t, x) variables is in fact ob-
tained constructing first an integral manifold M∗ ⊂ (P×R2) in the (p, x) variables.

Definition 3.5. We say that M∗ in P×R2 is an integral manifold for

ẋ = f∗(φt(p), x) (3.6)

if and only if, for any (φt(p), x0) ∈ M∗, the solution x(t; x0, p) is such that (φt(p), x(t; x0, p)) ∈
M∗ for all t ∈ R.

Definition 3.6. We say that E ⊂ R2 is positively invariant (respectively negatively invariant)
either for Eq. (3.5) or for Eq. (3.6) if for any T ∈ R and any x0 ∈ E we have x(t, T; x0) ∈ E
for any t ≥ T (respectively for any t ≤ T), or equivalently if x(t; x0, φT(p)) ∈ E for any t ≥ 0
(respectively for any t ≤ 0).

We recall that if we rephrase the time dependence of f in the language of skew-product
flows as in Section 2 we have x(t, T; x0) = x(t− T, φT(p) ; x0).

In Sections 3.1, 3.2 we enumerate some results addressed to reconstruct the AH bifurcation
pattern in our context. Their proofs are postponed to Section 4.
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3.1 Existence of positively invariant annulus and negatively invariant disc

Let us consider (3.4) and introduce polar coordinates as follows

r =
√

y2
1 + y2

2 , θ = arctan
(

y2

y1

)
. (3.7)

Following [12, §2], the first step in order to construct the attractor–repeller pair is the following
Lemma, compare with [12, Lemma 2.2].

Lemma 3.7. Assume that g (t, 0, ε, µ) = O(
√

ε), so that g̃ (p, 0, ε, µ) = O(
√

ε), uniformly in all the
variables, and set δ̄ =

√
ζ(µ) + ε. Then there are µ0 and ε0 such that the annulus A and the disc D

A := {(r, θ) |
√

ε(1− δ̄) ≤ r ≤
√

ε(1 + δ̄) , 0 ≤ θ ≤ 2π},
D := {(r, θ) | r ≤ δ̄

√
ε , 0 ≤ θ ≤ 2π}

are respectively positively and negatively invariant for (3.4), for any 0 < µ ≤ µ0, 0 < ε ≤ ε0.

The full fledged proof of this result as well as the ones of the others of this subsection are
postponed to §4.1. Using a result by Shen and Yi borrowed from [31] it is easy to prove that
D contains a repeller (a set attractive under time reversal).

Proposition 3.8. Assume that g (t, 0, ε, µ) = O(
√

ε) uniformly in all the variables, and that the flow
(P, {φt}) is almost periodic; then there are ε0 > 0, µ0 > 0 such that D contains a unique trajectory
yo(t) := yo(t; p) of (3.3) such that yo(t) ∈ D for any t ∈ R, and any 0 < ε ≤ ε0, 0 < µ ≤ µ0.
Further yo(t) is almost periodic and, if Q ∈ D then ‖yo(t)− y(t, p; Q)‖ → 0 as t→ −∞.

In fact we can relax the assumptions on the base flow (P, {φt}), see Remark 4.2 below.
Using Wazewski’s principle it is easy to prove the following.

Proposition 3.9. Assume that g (t, 0, ε, µ) = O(
√

ε) uniformly in all the variables. Then then there
are ε0 > 0, µ0 > such that the set A contains an invariant set Wµ(0), i.e if Q ∈ Wµ(0) then
y(t, p; Q) ∈ A for any t ∈ R, and any 0 < ε ≤ ε0, 0 < µ ≤ µ0. The set Wµ(0) is a compact
connected set and its image through the flow, i.e. Wµ(T) = {x(T, p; Q) | Q ∈ Wµ(0)} ⊂ A. Further,
for any T ∈ R, Wµ(T) is topologically equivalent to S1, see Definition 3.1.

The set Wµ(T), T ∈ R, plays the role of the attracting limit cycle of the classical AH
autonomous perturbation. In fact in the next subsection, requiring stronger assumptions, we
show that Wµ(T) is an exponentially stable integral manifold.

Remark 3.10. To prove Propositions 3.8 and 3.9 we just need f and g in (1.3) to be respectively
C1 and C2 so that g̃ in (3.4) is C1. However, to put in normal form a generic system of the form
(1.4), so that f is as in (3.2), we need f ∈ Cr and g ∈ Cr+1, r ≥ 4, so that f ∈ Cr and g̃ ∈ Cr.

3.2 Stronger assumptions: existence of an asymptotically stable integral manifold

In this subsection we always assume, for simplicity, that g̃ (t, 0, ε, µ) ≡ 0, so that the repeller of
Proposition 3.8 is in fact the origin. Here we aim to prove that M∗µ = ∪T∈R

(
{T} ×Wµ(T)

)
is

indeed an asymptotically stable integral manifold: for this purpose we adapt the argument
developed in [12], so that we can apply the results of [32] and [26].

Obviously, for µ = 0 and 0 < ε < ε0, (3.4) admits an attracting integral manifold M0 =

Γ×R which is independent of T but depends on ε, i.e. we have W0(T) ≡ Γ for any T ∈ R.
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Since we need a better look at a neighborhood of Γ, following [12, §2], we introduce polar
coordinates which evaluate the displacement from Γ, i.e.

ρ =
r(θ)− rΓ(θ)√

ε
, θ = arctan

(
y2

y1

)
, −1

2
≤ ρ ≤ 2. (3.8)

We emphasize that ρ is not a radius but it measures the radial displacement with respect to Γ,
therefore it might be negative. In fact ρ = 0 corresponds to Γ in the original (y1, y2) variables,
and ρ is negative when (y1, y2) lies in the bounded set enclosed by Γ. Further (3.8) is not well
defined when ρ < −1/2, i.e. when (y1, y2) is too close to the origin and in particular when
(y1, y2) ∈ D.

This way (3.4) is turned into the following:

ρ̇ = −2ερ− 3ερ2 + ε3/2ρA(ρ, θ) + εsζ(µ)B(φt/µ(p), ρ, θ),

θ̇ = 1 + εv(ε)(1 + ρ)2 + ε3/2C(ρ, θ) + εsζ(µ)D(φt/µ(p), ρ, θ).
(3.9)

Once again (3.9) is defined just on the stripe −1/2 ≤ ρ ≤ 2 which contains the image of A

through (3.8).

Remark 3.11. Since Γ is invariant for (3.4) for µ = 0 we see that ρ = 0 is invariant for (3.9), so
A and C are bounded; further B and D are bounded because g̃ (t, 0, ε, µ) ≡ 0. We give more
details of the derivation of (3.9) in Section 4 (however compare with (2.9), (2.10) in [12]).

Reasoning as in the proof of Lemma 3.7 we can set δ̃ := c
√

ζ(µ) where c > 0 is fixed
(independently of ε and µ), so that the stripe |ρ| ≤ δ̃ is positively invariant for (3.9). Further
the set |ρ| ≤ δ̃ in the new variables introduced for (3.9), corresponds to a set Ã in the old
(y1, y2) variables of (3.4) such that Γ ⊂ Ã ⊂ A (if c > 0 is small enough).

Now we put ourselves in the setting of [32], so we assume that P is endowed with a
distance d, and we state the result analogous to [12, Proposition 3.2], which is in fact based on
[32, Theorem 6.1], keeping the same notation to help a comparison.

Theorem 3.12. Assume that f and g̃ in (3.4) are Lipschitz continuous, so that the functions B and D
of (3.9) are Lipschitz continuous in p, uniformly for all relevant values of ρ and θ. Suppose that the
metric d satisfies the following condition:

sup
p1 6=p2∈P

{
lim sup

t→+∞

1
t

ln
(

d(φt(p1), φt(p2))

d(p1, p2)

)}
= 0. (3.10)

Then there are numbers ε0 > 0, µ0 > 0 and a continuous function v : P× S1 × [0, ε0]× (0, µ0) →
[0,+∞) such that

Mµ = {(p, [Γ(θ) +
√

εv(p, θ, ε, µ)]eiθ) | p ∈ P, 0 ≤ θ ≤ 2π} ⊂ P×R2 (3.11)

is invariant with respect to the flow of (3.4), i.e. if ( p̄, ȳ) ∈ Mµ then ψt( p̄, ȳ) := (φt(p), y(t, p; ȳ)) ∈
Mµ for any t ∈ R, 0 ≤ ε ≤ ε0, 0 < µ ≤ µ0. Moreover v(p, θ, ε, µ) is Lipschitz in (θ, ε) uniformly
for any p ∈ P, 0 ≤ θ ≤ 2π, 0 ≤ ε ≤ ε0, 0 < µ ≤ µ0.

Further assume that f and g̃ in (3.4) are Cr (i.e. f ∈ Cr, and g ∈ Cr+1 in (1.2)) so that B and D
in (3.9) are Cr, r ≥ 1, and let C = C(ρ, θ) be the coefficient in (3.9). If

√
ε0

∣∣∣∣∂C
∂θ

(0, θ)

∣∣∣∣+ ζ(µ0)ε
s−1
∣∣∣∣∂D

∂θ
(p, 0, θ)

∣∣∣∣ ≤ 1
r + 1

, (3.12)

for any 0 ≤ θ ≤ 2π and any p ∈ P, then v(p, θ, ε, µ) is of class Cr in (θ, ε).
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Here and afterwards eiθ stands for (cos(θ), sin(θ)), i.e we identify R2 and C, for notational
purposes. The proof of Theorem 3.12 is postponed to Section 4.2.

Remark 3.13. Condition (3.10) amounts to ask for the Lyapunov exponents of the slow flow
(P, {φt}) (which have the same sign of the fast flow (P, {φτ=t/µ})) to be non-positive: it is
satisfied by almost periodic and quasi periodic flows, see [12, §2] for details and definitions.

From Theorem 3.12 we can write Mµ as follows

Mµ =
⋃
p∈P

(
{p} × W̄µ(p)

)
(3.13)

where W̄µ(p) is a compact 1 dimensional Cr manifold homoeomorphic to S1.
Let p∗ ∈ P be the function such that g∗(φt(p∗), x, ε, µ) ≡ g(t, x, ε, µ), see Section 2, and set

Wµ(T) := W̄µ(φT(p∗)). We emphasize that Wµ(t) is a Cr manifold homeomorphic to S1 and
coincides with the invariant set Wµ(t) constructed in Proposition 3.9. Further,

M∗µ =
⋃
t∈R

(
{φt(p)} ×Wµ(t)

)
⊂ Mµ (3.14)

and M∗µ is dense in Mµ. An unsatisfactory aspect of Theorem 3.12 is that it does not provide
any regularity of Mµ with respect to the p (or equivalently t) variable, i.e. we do not have
much information about the regularity of W̄µ(p) and Wµ(T) with respect to p and T. In fact
in this setting we could expect for at most Lipschitz regularity. To overcome this problem we
need to ask for a little bit more concerning the properties of the base flow (P, {φt}); then we
can adapt the argument of [12, Theorem 3.9], which is in fact based on [26], to get the needed
regularity. So let φτ(p) be the solution on the smooth compact manifold P of the equation
ṗ = h(p) where h ∈ Cr, and consider the following extended equation:

ρ̇ = −2ερ− 3ερ2 + ε3/2ρA(ρ, θ, ε, µ) + εsζ(µ)B(p, ρ, θ, ε, µ),

θ̇ = 1 + εv(ε)(1 + ρ)2 + ε3/2C(ρ, θ, ε, µ) + εsζ(µ)D(p, ρ, θ, ε, µ),

µ ṗ = h(p).

(3.15)

We consider the following assumption borrowed from [12]:

H Let φτ(p) be a solution of ṗ = h(p), and let A(t) be the solution of the variational
equation χ̇ = ∂h

∂p (φτ(p))χ, such that A(0) = I. Then all the eigenvalues of A(τ) have
modulus 1.

Assumption H is satisfied e.g. if P is a d-Torus and (P, {φt}) is the Kronecker flow with
rationally independent frequencies, i.e. the original g is quasi periodic in the t variable.

Theorem 3.14. Assume that hypothesis H holds, and that f ∈ Cr and g ∈ Cr+1 in all their variables.
Then there are ε0 > 0, µ0 > 0 and a continuous function v : P× S1 × [0, ε0]× (0, µ0] → [0,+∞),
such that the manifold Mµ defined in (3.11) is invariant for the flow of (3.4). Further v is Cr in (p, θ)

for any p ∈ P, 0 ≤ θ ≤ 2π, 0 ≤ ε ≤ ε0, 0 < µ ≤ µ0.
Mµ is asymptotically stable, i.e. if y0 ∈ A then there is ( p̄, ȳ) ∈ Mµ such that ‖y(t, p; y0) −

y(t, p̄; ȳ)‖ → 0 as t→ +∞ exponentially.
Moreover there is c > 0 (independent of ε and µ) such that |v(p, θ, ε, µ)| ≤ c

√
ζ(µ) and

‖ ∂v
∂p,∂θ (p, θ, ε, µ)‖∞ ≤

√
ζ(µ).

The proof of Theorem 3.14 is postponed to Section 4.2.
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Corollary 3.15. Assume that the hypotheses of Theorem 3.14 hold. Then the continuous function
v∗ : R× S1 × [0, ε0]× (0, µ0]→ [0,+∞) defined by

v∗(t, θ, ε, µ) := v(φt(p∗), θ, ε, µ)

is Cr in (t, θ, ε) for any t ∈ R, 0 ≤ θ ≤ 2π, 0 ≤ ε ≤ ε0, and 0 < µ ≤ µ0. Further the set M∗µ defined
by (3.14) is invariant for the flow of (1.3) and the Cr manifold Wµ(t) depend in a Cr way from (t, ε)

for any (t, ε) ∈ R× [0, ε0] but it is just continuous in µ.

Remark 3.16. The main contributions of Theorem 3.14 with respect to Theorem 3.12 is that,
using assumption H, it is able to guarantee that the function v is Cr in the p variable. Hence,
by Corollary 3.15, Wµ(t) is Cr in t and M∗µ is a Cr manifold: this fact will allow to apply
directly some classical tools such as Diliberto’s maps, suspension flows, and KAM theory, to
get information on the dynamics inside Mµ, see [12, §4].

A priori Wµ(t) is not defined when µ = 0 but we can set W0(t) ≡ Γ. Since v → 0 as
µ → 0 uniformly in all the variables and its size is controlled by c

√
ζ(µ) we see that Wµ(t) is

continuous in µ for 0 ≤ µ ≤ µ0.

3.3 Some comments on the size of the parameters

We emphasize once again that all the results of the previous section can be reformulated also
in the case s = 1 and ε = µ, i.e. for equation (1.2).

Corollary 3.17. Let us consider (1.2). Then there is ε0 > 0 such that the results in Lemma 3.7,
Propositions 3.8 and 3.9, Theorems 3.12, 3.14 and Corollary 3.15 hold for any 0 < ε < ε0 without any
further change.

From Corollary 3.17 we see that we can handle (3.3), hence (1.4), as a 1-parameter bifur-
cation problem (even if for the proofs a 2 parameters argument is in fact needed to recover
the presence of uniform hyperbolicity, i.e exponential dichotomy). In fact also for (1.2) we can
construct a negatively invariant disc D containing a repeller, and a positively invariant annu-
lus A containing an invariant set Wε(T) which is topologically equivalent to S1, just assuming
|g(t, 0, ε, ε)| ≤ c

√
ε for a certain c > 0 (hence g̃(φt/ε(p), 0, ε, ε) = o(

√
ε) for any t ∈ R), cf.

Propositions 3.8, 3.9. Further, assuming condition (3.10) on the base flow, we find that Wε(T)
is in fact a compact Cr integral manifold diffeomorphic to a circle, for any T ∈ R, cf. Theorem
3.12. Finally, if assumption H holds, from Theorem 3.14 we see that Wε(T) changes smoothly
with T ∈ R i.e. Mε defined in (3.11) is smooth in p as well.

However in this case the results are not very robust, and it might be very difficult to detect
the bifurcation pattern in applications.

Remark 3.18. Let us consider (1.2). We emphasize that the value of ε0 is possibly very small. In
fact in Lemma 3.7 such a value depends on (4.2), (4.3) in which it is required that 2ε

√
εζ(ε) +

O(εζ(ε)
√

ε) > ε
√

εζ(ε). Estimates of the same order are required several times through the
proofs of the results of the whole sections 3.1, 3.2. Since we do not have a real control on the
smallness of ζ(ε), which might go to 0 even as | ln(ε)|−1 or slowlier, the value ε for which
(4.2) holds might be very small. We recall that the annulus A, in which the manifold Wε(T)
is contained, is centered on the circle of radius r =

√
ε. Hence if ε0 is very small also Wε(T)

might be so small that it might be difficult to distinguish it from the origin, thus making the
bifurcation pattern hard to be detected.
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To overcome the lack of robustness explained in Remark 3.18 we could act in two possible
ways. Firstly we could go back to (1.4) and separate the parameters ε and µ; then we should
ask for µ � ε, e.g. µ = ε2. However, once again, we cannot really say how small ζ(µ) is,
and it might happen that | ln(ε)|−1 � ζ(µ), see [13, Appendix B], so this approach should be
discarded.

A more appropriate approach could be to ask for more stringent smallness conditions on
the function g, i.e. to start from (1.3) with s > 1.

In this setting we could also avoid to apply Fink’s averaging and the change of variables
(2.5). The drawback is that we lose something in the smallness of the perturbation but we
recover one order of regularity, and the function g we are dealing with is directly known.

In this case the smallness condition on ε0 and µ0 is needed to guarantee that terms of order
εs−1 (or of order ζ(µ)εs−1 if we apply (2.5)) may be neglected with respect to constant terms.
So, setting e.g. s = 3/2, we can expect for a visible attracting manifold Wµ(T).

4 Proofs

4.1 Proof of Propositions 3.8 and 3.9.

We begin this section by sketching the proof of Lemma 3.7, which is in fact a translation of
the proof of [12, Lemma 2.2]. Consider (3.4) and pass to polar coordinates as in (3.7), then

ṙ = εr− r3 + γ1(r, θ, ε) + εsζ(µ)γ̄1(φt/µ(p), r, θ, ε, µ),

θ̇ = 1 + v(ε)r2 + γ2(r, θ, ε) + εsζ(µ)γ̄2(φt/µ(p), r, θ, ε, µ)
(4.1)

where γ̄1(r, θ, ε) = O(r5), γ2(r, θ, ε) = O(r4) and γ̄i(φt/µ(p), r, θ, ε, µ) are bounded for i = 1, 2.

Proof of Lemma 3.7. In the assumption of Lemma 3.7 we see that γ̄1(φt/µ(p), 0, θ, ε, µ) = O(
√

ε).
Hence if we set r0 = δ̄

√
ε (where δ̄ :=

√
ζ(µ) + ε) from (4.1) we easily see that

ṙ(r0, θ) = εr0
[
1 + O(δ̄2 + εs−1

√
ζ(µ)

]
> εr0/2 > 0 (4.2)

for any θ, if ε and µ are small enough. Hence it follows that D is negatively invariant. Analo-
gously let us set r1 =

√
ε(1− δ̄) and r2 =

√
ε(1 + δ̄): from a straightforward computation we

get

ṙ(r1, θ) > ε
√

ε[(1− δ̄)− (1− δ̄)3 + O(ε + εs−1ζ(µ))] > ε3/2δ̄ > 0 (4.3)

and similarly ṙ(r2, θ) < −ε3/2δ̄ < 0, for any θ, if ε and µ are small enough. Hence we see that
A is positively invariant.

In order to prove Proposition 3.8 we need to show that all the trajectories of (3.4) approach
each other, and then to apply the argument of [31, Part II, §2.4].

Proof of Proposition 3.8. Fix p ∈ P, Q1, Q2 ∈ D and set d(t) = y(t, p; Q2)− y(t, p; Q1). Notice
that y(t, p; Qi) ∈ D for any t ≤ 0 by Lemma 3.7, for i = 1, 2; hence R(t) := |d(t)| ≤ 2δ̄

√
ε for

any t ≤ 0, where δ̄ =
√

ζ(µ) + ε.
Observe now that Nx(ȳ, ε) = O(δ̄2ε) and g̃x(t, ȳ, ε, µ) is bounded uniformly for any t ≤ 0,

ȳ ∈ D, 0 < ε < ε0, 0 < µ < µ0. Hence, linearizing (3.4) in y(t, p; Q1) we see that, for any t ≤ 0,
d(t) solves an equation of the form

ḋ = [L + O(εsζ(µ))]d
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Hence for any t ≤ 0 we find

Ṙ = ε(1 + O(ζ(µ))R >
ε

2
R > 0. (4.4)

It follows that the distance in R2 itself is a Lyapunov function in backward time and the flow
of (3.4) is contractive, again in backward time, see [31, Part II, §2.4] at page 30. So applying
[31, Part II, Theorem 2.9], we get the existence of an almost periodic trajectory yo(t) which is
a repeller, and we conclude the proof of Proposition 3.8.

Proof of Proposition 3.9. Let Wµ(τ) be the set of all the points Q such that y(t, τ; Q) ∈ A for any
t ∈ R: we need to show first that Wµ(τ) is non-empty, then that it is a compact connected
set topologically equivalent to S1. Let Q ∈ A \Wµ(τ) and set T(Q) := inf{s | y(t; τ, Q) ∈
A, for any t > s}. Let ∂Ai and ∂Ao be the inner and outer circle defining the border of A and
set

Ei := {Q ∈ A\ Wµ(τ) | y(T(Q); τ, Q) ∈ ∂Ai},
Eo := {Q ∈ A\ Wµ(τ) | y(T(Q); τ, Q) ∈ ∂Ao}

so that we have partitioned A as A = Ei ∪ Eo ∪Wµ(τ).
Since the flow on ∂A aims transversally inside A for any t ∈ R, we easily get that T(Q) is

continuous and that Ei, E0 are relatively open. Now we show that Ei and Eo are nonempty so
Wµ(τ) is non empty and compact as well.

Let Υ(s) : [0, 1] → A be a smooth path such that Υ(0) ∈ ∂Ai and Υ(1) ∈ ∂Ao; then
by construction Υ(0) ∈ Ei while Υ(1) ∈ Eo. It follows that Ei, Eo are non-empty; hence
Wµ(τ) is non-empty and compact. Further we have shown that each path connecting ∂Ai

and ∂Ao intersects Wµ(τ); then Proposition 3.9 follows by a straightforward application of
[29, Lemma 4].

Remark 4.1. In fact, applying [29, Lemma 4] we find that Wµ(τ) is a continuum i.e. there is a
1 dimensional manifold Γ̃ homeomorphic to a circle such that for any δ > 0 and any Q1 ∈ Γ̃
there is Q2 ∈ Wµ(τ) such that |Q2 − Q1| < δ. Further Wµ(τ) is topologically equivalent to
S1, i.e. Wµ(τ) might be thick in some or in all the parts so it might not be a manifold, in this
setting, cf. Definition 3.1.

Remark 4.2. We emphasize that Proposition 3.8 can be trivially generalized to the case where
the base flow (P, {φt}) is distal, i.e. satisfying inf{|φt(p2) − φt(p1)| | t ∈ R} > 0 for any
p1 6= p2 in P. In this more general case we can still apply [31, Part II, Theorem 2.9] and we
find that yo(t) is a copy of the base (i.e. its dynamics is isomorphic to {φt}), see [31, Part II,§2]
for more details.

Proposition 3.9 needs even weaker recurrence properties; in fact it is enough that (P, {φt})
is uniquely ergodic so that we can apply the machinery described in section 2 and write
equation (3.4).

4.2 Proof of Theorems 3.12 and 3.14

The proofs of Theorems 3.12 and 3.14 are obtained with some simple modifications of the
arguments of [12, Proposition 3.2] and [12, Theorem 3.9], therefore we will be rather sketchy,
remanding the reader to [12] for more details. The key idea is to consider (3.4), to fix ε > 0
and to regard ζ(µ) as a bifurcation parameter so that we can use exponential dichotomy and
uniform hyperbolicity, and put ourselves in the framework of [12, §3].
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Proof of Theorem 3.12. First of all, following [12, pages 1127-1128], we see that setting ρ =

[r(θ)− Γ(θ)]/
√

ε we pass from (4.1) to (3.9). In fact Γ(θ) =
√

ε[1+
√

εK(θ, ε)] where K(θ, ε) is
a function bounded with its derivatives. Hence r =

√
ε [ρ + 1 +

√
εK(θ, ε)] and, substituting

in (4.1), we get

ρ̇ +
√

ε
∂K
∂θ

(θ, ε)θ̇ = ε[ρ + 1 +
√

εK(θ, ε)]− ε[ρ + 1 +
√

εK(θ, ε)]3 + ε2H1(ρ, θ, ε)

+ εsζ(µ)H̄1(φt/µ(p), ρ, θ, ε, µ)

where H1 and H̄1 are bounded, and θ̇ is given by (3.9). Since ρ = 0 is invariant for µ = 0, we
see that we have no 0-order term in ρ for ε = 0, hence

ρ̇ = −2ερ− 3ερ2 + ε3/2ρA(ρ, θ, ε) + εsζ(µ)B(φt/µ(p), ρ, θ, ε, µ) (4.5)

where the remainder term A(ρ, θ, ε) is bounded and its leading term comes from ∂K
∂θ (θ, ε)θ̇. So

we passed from (4.1) to (3.9).
Now is easy to check that the set E defined below

E = {(ρ, θ, p) | |ρ| ≤ δ , (θ, p) ∈ S1 × P} , δ =
√

ζ(µ) > 0 (4.6)

is positively invariant for the flow of (3.9) (in fact it is a slight deformation of A×P and their
sizes are of the same order if ε = O(ζ(µ))).

Following [12, Proposition 3.2] we consider (4.5) as a perturbation of its linear part. Then,
for any 0 < ε < ε0, 0 < µ < µ0, for each orbit φτ(p) we see that the linearized ρ equation
admits exponential dichotomy with dichotomy constants (K, α) where α > ε, see Proposition
1 of [5, §4]. Next we can directly apply the argument of [32, Theorem 6.1] and if

sup
0≤θ≤2π

ε3/2
∣∣∣∣∂C

∂θ
(0, θ)

∣∣∣∣+ ζ(µ)εs
∣∣∣∣∂D

∂θ
(p, 0, θ)

∣∣∣∣ ≤ ε

(r + 1)
, (4.7)

we get the existence of the manifold Mµ with the desired properties. So the Theorem is proved
simply noticing that (4.7) follows from (3.12).

For the proof of Theorem 3.14 we borrow some notation from [12], since it is obtained by
repeating the argument of the proof of [12, Theorem 3.9].

We recall that the set E defined in (4.6) is positively invariant for the flow of (3.9). We
denote by Π, Πθ , Πp, Πρ the projection Π(ρ, θ, p) = (θ, p), Πρ(ρ, θ, p) = ρ, Πθ(ρ, θ, p) = θ,
Πp(ρ, θ, p) = p. The first step is to discretize time, so let us fix T > 0; we invite the reader to
think of T as a time close to the first return time for µ = 0, i.e. T = 2π, even if it is not needed.
Let Fµ,t(ρ0, θ0, p0) be the solution of (3.15) such that Fµ,0(ρ0, θ0, p0) = (ρ0, θ0, p0) and consider
Fµ,T : E → E. Observe that V0,T = {0} × S1 × P is an invariant centre manifold for F0,T, and it
corresponds to the invariant manifold M0 = Γ× P in the original coordinates.

Let σ : (S1 × P) → E be a Cr function (a section), i.e. σ(θ, p) = (θ, p, s(θ, p)) and s :
(S1 × P)→ [−δ, δ] is Cr. We define the slope of a section σ as

‖σ‖sl := sup
{∣∣∣∣∂s(θ, p)

∂θ, ∂p

∣∣∣∣ ∣∣∣(θ, p) ∈ S1 × P
}

and we consider the set Σ := {σ : (S1 × P)→ E | ‖σ‖sl ≤ δ}. We endow Σ with the C0 norm,
which makes it complete, see [26] for details.

Our aim is to apply the results of [26] to obtain the following result on the discrete map
Fµ,T, rephrased from [26], analogous to [12, Proposition 3.3]. Once again we just sketch the
proof remanding to [12, Proposition 3.3] for details.
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Lemma 4.3. Assume that f and g̃ are Cr, r ≥ 1, in all their variables; assume further H and that
g̃(t, 0, ε, µ) ≡ 0. Then there is a Cr function vµ,T : S1 × P→ R, such that the manifold

Vµ,T =
{
(vµ,T(θ, p), θ, p) | θ ∈ S1 , p ∈ P

}
(4.8)

is invariant for forward and backward iterates of Fµ,T. Moreover ‖vµ,T‖ = O(δ) and
∥∥ ∂vµ,T

∂θ,∂p

∥∥
∞ ≤ δ.

All the quantities in this proof depend on ε and µ which are small positive constants which
will be fixed at the end of the proof: we omit to write explicitly these dependencies. Further,
we will write F for Fµ,T to avoid cumbersome notation (T is fixed in the whole proof).

Let µ > 0; for any σ ∈ Σ we define the map Hσ : (S1 × P) → (S1 × P) by Hσ = Π ◦ F ◦ σ.
Such a map is surjective since F is a diffeomorphism. Roughly speaking a section σ maps
each point (θ̄, p̄) ∈ (S1 × P) in a point ē = (ρ̄, θ̄, p̄) ∈ E. The section Hσ maps (θ̄, p̄) in a point
ẽ = (ρ̃, θ̃, p̃) ∈ E, where ẽ is the evolution of ē through system (3.15), after time T.
We emphasize that when µ = 0 the map F is not properly defined in its P component, so we
arbitrarily decide that F0,T acts as the identity in P, i.e. ΠpF0,T(ρ, θ, p) ≡ p for any (ρ, θ, p) ∈ E.
However this means that the map Fµ,T is not continuous in µ when µ = 0: this is the main
difference with the argument in [12].

Following the proof of [26, Theorem 4.1], in particular point (v) at pag. 44, we see that, Hσ

is bijective, so it admits a proper inverse H−1
σ , for any σ ∈ Σ.

Then we define the map F] : Σ → Σ as F](σ) = F ◦ σ ◦ H−1
σ , see [26, Theorem 4.1]. For

µ = 0, such a map is a contraction and its unique fixed point corresponds to the unperturbed
centre manifold ρ = 0, i.e. Γ× P in the original coordinates.

Lemma 4.3 is obtained by using the ideas in the proof of Theorem 4.1 point f) in [26]
(pp. 49–51). In fact we will show that F] is a contraction for µ > 0 too (small enough), and its
unique fixed point σ] parameterizes the integral manifold V = Vµ,T, see also [12, Proposition
3.3].

The proof is developed in several steps, in which we rephrase the argument of [12, Propo-
sition 3.3]: we enumerate them here for convenience of the reader, underlining the changes
and remanding to [12, Proposition 3.3] for details.

We recall that µ is a small positive constant in the whole argument: when µ = 0 we obtain
the classical AH autonomous perturbation.

Step 1. Hσ = Π ◦ F ◦ σ : S1 × P → S1 × P is bijective for any fixed σ and we denote by H−1
σ its

inverse.

Proof. The function Hσ is clearly invertible in its P component due to the skew-product nature
of the flow of (3.15) Further, integrating (3.15), we get

Πθ [Fµ(s(θ, p), θ, p)] = θ + T[1 + εv(ε)] + 2εv(ε)O(δ) + O(εδ2 + ε3/2 + εsζ(µ))] , (4.9)

see [12] for details. Using (4.9) we find the following estimates for the derivatives of Hσ

analogous to (3.3) in [12]:(
∂
∂θ Πθ Hσ

∂
∂p Πθ Hσ

∂
∂θ ΠpHσ

∂
∂p ΠpHσ

)
=

(
1 + O(δε) O(εsζ(µ))

0 A( T
µ )

)
. (4.10)

From assumption H we see that Hσ is invertible and its inverse, which is obtained simply
reversing time, satisfies (4.10) too; so Step 1 is concluded.
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Now we rephrase [12, Lemma 3.6].

Lemma 4.4. Let σ′′, σ′ ∈ Σ, then setting c1 = 3Tv(0) > 0 we find

‖Hσ′′ − Hσ′‖ ≤ c1ε‖σ′′ − σ′‖ , ‖[Hσ′′ ]
−1 − [Hσ′ ]

−1‖ ≤ c1ε‖σ′′ − σ′‖.

Proof. We remand the reader to [12] for details; by the way we observe that the key estimates
are the following:

d
dt

∂ρ(t)
∂ρ(0)

= [−2ε + o(ε) + O(εsζ(µ))]
∂ρ(t)
∂ρ(0)

+ O(εsζ(µ) + ε3/2δ)
∂θ(t)
∂ρ(0)

,

d
dt

∂θ(t)
∂ρ(0)

= O(ε3/2 + εsζ(µ))
∂θ(t)
∂ρ(0)

+
[
2εv(ε)(1 + δ) + O(ε3/2 + εsζ(µ))

] ∂ρ(t)
∂ρ(0)

(4.11)

and that the Lemma then follows from the Gronwall-type result in [12, Lemma 3.5].

Step 2. F] := F ◦ σ ◦ H−1
σ maps Σ into itself. Observe first that by construction F] is the identity

in its θ, p coordinates (it simply moves the time backward with H−1
σ and forward with F), for

any σ ∈ Σ, but in general it does not fix the ρ coordinate.
Fix σ ∈ Σ and let σ](θ, p) = (s](θ, p), θ, p) := F](σ); since the set |ρ| ≤ δ is positively

invariant for the flow of (3.15), we see that ‖s](θ, p)‖ ≤ δ. Then we need to show that ‖σ]‖sl ≤
δ as well, and Step 2 is proved. From a straightforward repetition of the argument of Step 2
in [12, Lemma 3.6] we find the following estimates:∥∥∥∥∂s](θ, p)

∂θ

∥∥∥∥ ≤ δ

(
1− εT

2

)
,

∥∥∥∥∂s](θ, p)
∂p

∥∥∥∥ ≤ δ

(
1− εT

2

)
. (4.12)

The inequalities in (4.12) are obtained simply by replacing the parameter µ of the proof [12,
Lemma 3.6] by εsζ(µ) and using the fact that εsζ(µ) = o(ε). So we immediately see that
‖σ]‖sl ≤ δ.

Then reasoning again as in [12, Proposition 3.3, Step 3] we get the following.

Step 3. F] is a contraction in Σ of factor K = 1 − εT
2 . Hence we see that F] has a unique

fixed point in Σ, which we denote by σF(θ, p) = (sF(θ, p), θ, p). Obviously σF(θ, p) is invariant
for the action of F. Let us denote by vµ,T(θ, p) := sF(θ, p). We have already shown that

‖vµ,T‖ = O(δ),
∥∥ ∂vµ,T

∂θ,∂p

∥∥
∞ ≤ δ. Further the set Vµ,T defined in (4.8) (i.e. the image of σF(θ, p)) is

invariant for forward and backward iterates of F = Fµ,T.
We just need to show that vµ,T ∈ Cr then Lemma 4.3 is proved. For this purpose we need

to show the following estimates for any σ ∈ Σ

‖Πρ[F(ρ2, θ, p)]−Πρ[F(ρ1, θ, p)]‖ ≤ K‖ρ2 − ρ1‖,
‖Π[H−1

σ (θ2, p2)− H−1
σ (θ1, p1)]‖ ≤ α‖(θ2, p2)− (θ1, p1)‖ .

(4.13)

The first inequality in (4.13) is obtained for K = 1− εT
2 and is proved as in [12, Proposition

3.3, Step 4]. Further, using (4.10) and assumption H we see that there is c > 0 such that the
second inequality in (4.13) holds with α = 1 + cδε. Then, for any r ≥ 1, we can choose rδ > 0
(hence µ > 0, see (4.6)) small enough so that

Kαr =

(
1− εT

2

)
(1 + cδε)r = 1− ε

(
T
2
− crδ

)
+ o(εδ) < 1− εT

3
.
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This way we have shown that Kαr < 1 for any 0 < ε < ε0 and any 0 < µ < µ0. Hence Fµ

is a fiber contraction of sharpness r. So we are in the position to apply the argument of point
d) in [26, Theorem 4.1], which is in fact based on the fiber contraction theorem for Cr maps,
i.e. in [26, Theorem 3.5]. This proves that the fixed point σF of F] is actually Cr in its θ and p
variables, so the proof of Lemma 4.3 is concluded.

Proof of Theorem 3.14. Theorem 3.14 now easily follows passing from discretized time to con-
tinuous time. The proof is a straightforward repetition of [12, Theorem 3.9] which is rephrased
from [20, Theorem 2.16]. The key lies in the fact that all the arguments are uniform with re-
spect to T > 0.

5 Some remarks on the dynamics on Mµ

Let m0 = (p, Q0) ∈ Mµ, so that m0 ∈ W̄µ(p); we denote by ψt(m0) = (φt/µ(p), y(t, p; Q0)).
Notice that ψt(m0) ∈ Mµ for any t ∈ R, hence ({ψt}, Mµ) defines a flow. In fact ({ψt}, Mµ)

is often referred to as the circle extension of ({φt/µ}, P), since it is obtained by adding an extra
variable which takes values in S1 (in fact in a set homeomorphic to S1).

In this section we briefly review some facts concerning the dynamics in ({ψt}, Mµ); they
have already been stated and proved in [12, §4] for the analogous regular perturbation prob-
lem. In fact the same results hold in this fast oscillation context with no changes: we sum-
marise them here for convenience of the reader. The main difference with respect to the
regular perturbation setting of [12, §4] is that it becomes ineludible the problem of avoiding
resonances between the frequencies of ({φt/µ}, P) and the “rotation” around Mµ, whose fre-
quency is close to 2π. So we will have intermittency phenomena: sequences of values µj ↘ 0
for which the flow in Mµ is simply the results of the addition of the rotation number (see be-
low) to the frequencies of ({φt/µ}, P), and other values for which we have mixing and weakly
mixing flow ({ψt}, Mµ). In fact the frequency modulus of ({φt/µ}, P) diverge while the rota-
tion number stay close to 2π. We emphasize that similar results have already been observed
in [21] for systems with rapidly varying coefficients and subject to saddle-node or transcritical
bifurcation.

We assume that the hypotheses of Theorem 3.14 are satisfied so that Mµ is Cr in p as
well. This will allow us to introduce Diliberto map and to identify the flow ({ψt}, Mµ) as a
suspension flow of the base flow ({φt}, P).

Namely, by construction, for any p ∈ P the manifold Mµ intersects the y1 positive semi-
axis (or more precisely L1 = P × {(y1, 0) | y1 > 0}) in a unique point m0(p) = (p, [Γ(0) +√

εv(p, 0)ei0]). Let T(p) be the first retour map of m0(p) = (p, Q0(p)), i.e. the least positive
time such that ψt(m0(p)) is in L1. Hence ψT(p)(p, Q0(p)) = (φT(p)(p), Q1(p)) where Q1(p) =
Γ(2π) +

√
εv(φT(p)

µ

(p), 2π)ei2π.

Then, from [12, Proposition 4.3] we see that the Diliberto map K : P → P defined as
K(p) = φT(p)

µ

(p) is a homemorphism.

Now consider the product space P×R, subject to the equivalence relation ∼ defined as
follows:

(p, s + T(p)) ∼ (K(p), s) (p ∈ P, s ∈ R).

One defines a flow {σt} on the quotient space Σ = P×R/ ∼ by setting

σt[p, s] = [p, s + t]
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where [p, s] denotes the equivalence class (i.e., elements of Σ) which contains (p, s) ∈ P×R.
Then Σ = ΣT

K is a compact metrizable space, and {σt} is a flow on Σ, which is usually referred
to as the suspension flow of K with roof function T.

From [12, Proposition 4.4] we see that the circle extension ({ψt}, Mµ) of ({φt/µ}, P) can be
identified with (Σ, {σt}), i.e. we have the following.

Remark 5.1. The flow of ψt on Mµ is isomorphic to the flow of {σt} on Σ.

Remark 5.1 can now be used to study the dynamics of ({ψt}, Mµ). We sum up some
results borrowed again from [12, §4]. We consider µ ∈]0, µ0] fixed, and we look for sufficient
conditions to have information on the dynamics of (Mµ, {ψt}): this will implicitly result, in
particular, in asking for non-resonance conditions, which means choosing particular values of
µj ↘ 0.

Assume that ({φt}, P) is uniquely ergodic, so that ({φt/µ}, P) is uniquely ergodic too. Let
Q̄0 = ρ0eiθ0 be such that m0 = (p, Q̄0) ∈ Mµ, i.e. ρ0 = Γ(0) +

√
εv(p, θ0); denote by θ(t, p, θ0)

the solution of the second equation in (3.9). Then the limit

lim
|t|→∞

θ(t)
t

:= ρµ (5.1)

exists and is uniform in (p, θ0) ∈ P× S1. Let us fix 0 < µ ≤ µ0. In the difficult case in which
P is a generic compact metric space and (P, {φt}) is just a minimal almost periodic flow, the
flow (Mµ, {ψt}) is a Furstenberg extension of (P, {φt}), see [12, Proposition 4.12]; we remand
the interested reader to the last pages in [12] for details, see also [14].

We specialize now to the case where P is a d dimensional torus and ({φt}, P) is quasi-
periodic with frequencies ωi, i = 1, . . . , d. We also pick up µ so that µρµ 6= ωi − 2kπ for
any i and any k ∈ Z. Then one would expect that the flow on ({ψt}, Mµ) is quasi periodic
with frequencies {ωi/µ | i = 1, . . . , d} ∪ {ρµ}. This is not always the case; in fact the flow
of ({ψt}, Mµ) could even be weakly mixing, due to resonances (or better to the failure of
Diophantine conditions).

A useful tool to ensure the persistence of almost periodic behaviors is the bounded mean
motion property, see [19]. Let m = (p, r, θ) ∈ Mµ, where r = r(p, θ), and let ψt(m) =

(φt/µ(p), r(t)eiθ(t)) ∈ Mµ.

Definition 5.2. We say that the flow {ψt} on Mµ has the bounded mean motion property
(bmm for short), if there exists a fixed constant c such that, for each m ∈ Mµ we have

|θ(t)− ρµt| ≤ c (t ∈ R , p ∈ P). (5.2)

Let us consider µ fixed. Assume that ({φt}, P) is minimal and almost periodic, and that
({ψt}, Mµ) has the bmm property. Then each minimal subset of Mµ is almost automorphic
and its frequency modulus is generated by the frequency modulus of ({φt/µ}, P) and ρµ, see
[19, Theorem 8.3], or [12, Introduction] for definitions.

Assume further that ({φt}, P) is quasi-periodic with frequencies ωi, i = 1, . . . , d, and that
µρµ 6= ωi modulus 2π for any i. Then either (M, {ψt}) is quasi periodic with frequencies ωi/µ

and ρµ (the easy case whose existence we conjectured few lines above) or it is a “Cantorus”,
see [19], and it laminates in almost periodic minimal flows.

We emphasize that if we are considering a periodic perturbation, i.e. ({φt}, P) is just a
rigid rotation in S1, then ({φt}, P) always has bmm, see [4]. But this is not the case if the
perturbation is quasi periodic, or it has more general recurrence properties.
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A possible way to reveal the presence (or the absence) of bmm for (M, {ψt}) is to conjugate
such a flow to some simple map on the d-Torus P. The bmm holds if the flow is conjugated
with an irrational rotation Rρµ of the d-Torus P, and in this case Mµ is either a d + 1-Torus or
a Cantorus. To obtain such a conjugation with an irrational rotation Rρµ one might profit of
some results of KAM theory as explained in [12, Proposition 4.10], which rely on [15, 16]. For
this purpose some Diophantine conditions and Cr smoothness of (M, {ψt}), with r large are
essential.

If such a conjugation fails the flow might be “rigid” [8], weakly mixing [9] or mixing [8].
We emphasize that in any case we need to compare the frequencies ωi/µ of ({φt/µ}, P)

with the rotation number ρµ modulus 2π so in general we should expect for intermittency
phenomena. I.e. the bmm property is probably satisfied for at most a sequence of values
µj → 0. So as µ decreases we should expect for some rare values for which the flow on Mµ is
quasi periodic, and a majority of values in which it is just almost automorphic, weakly mixing
or mixing.

Appendix A Concerning the change of variables by Bellman et al.

In this appendix we make a brief digression about the methods developed in [1, 2]. The main
idea is the following: in a system with fast varying coefficients it is possible to construct a
change of variables which reveals a shift in the coefficients of the averaged system, which may
result in a displacement of the bifurcation value. Such a phenomenon may be responsible of
gain or loss of stability of the equilibria, see [1, 2]. In [13], we have already discussed the case
of a Van der Pol oscillator with rapidly varying coefficients, using the methods developed
in [1, 2]. In fact the discussion can be generalized so to embrace the general case of an AH
bifurcation pattern. Again we just give the main ideas remanding the interested reader to
[13, §3.4] for details, see also [2]. We consider an autonomous system which undergoes to an
AH bifurcation pattern, and we assume that the coefficients of its linear part are subject to a
rapidly varying non-autonomous perturbation.

So we consider

dx
dt

=

 ε + h1

(
t
µ

)
−1

1 ε + h2

(
t
µ

)  x−
(

1 v(ε)

−v(ε) 1

)
|x|2x + W(x, ε) (A.1)

where the functions hi(t) have a bounded primitive with 0 mean value, for i = 1, 2, i.e.
Hi(τ) =

∫ τ
0 hi(t)dt such that limτ→∞

1
τ Hi(τ) = 0. The method consists in applying a first

change of variables, i.e. we set

xi(τ) = yi(τ)eµHi(τ), τ =
t
µ

,

a(τ) = eµ[H1(τ)−H2(τ)], b(τ) = [a(τ)]−1
(A.2)

so that we pass from (A.1) to

1
µ

dy
dτ

=

(
ε −b(τ)

a(τ) ε

)
y−

(
1 v(ε)b(τ)

−v(ε)a(τ) 1

)
K(y, τ)y + W̃(y, τ, ε) (A.3)

where K(y, τ) = [y1eµH1(τ)]2 + [y2eµH2(τ)]2, and W̃(y, τ, ε) = O(|y|5) uniformly in τ and ε. The
key observation is that, even if the functions Hi have 0 average, using Jensen’s inequality we
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see that

ā = lim
τ→+∞

1
τ

∫ τ

0
a(σ)dσ = 1 + Āµ , b̄ = lim

τ→+∞

1
τ

∫ τ

0
b(σ)dσ = 1 + B̄µ (A.4)

where Ā > 0, B̄ > 0.
Therefore, if we consider the averaged system where we replace a, b by ā, b̄ and we pass to

polar coordinates, we observe an increment in the rate of rotation of order µ(Ā + B̄)/2 even
if the perturbation hi(t) of the coefficients have 0 average. Namely if we set r̄ = [āy2

1 + b̄y2
2]

1/2,

and θ̄ = arctan
[√b̄y2√

āy1

]
we get

dr̄
dt

= µ
{

εr̄− r̄3(1 + µC1(θ̄)) + r̄5C2(θ̄, ε)
}

,

dθ̄

dt
= µ

√
āb̄
{

1 + ω(ε)r̄2C3(r̄, θ̄) + r̄4C4(r̄, θ̄, ε)
} (A.5)

where the functions Ci are uniformly bounded in their respective variables.
From this computation we also see that the attracting invariant manifold, if exists, “tend

to assume a more elliptic like shape”, i.e. it is a small τ dependent deformation of the ellipse
āy2

1 + b̄y2
2 = ε, that is r̄ =

√
ε.

Following [2] we point out that if we replace the functions hi(
t
µ ) in (A.1) by the large and

fast varying functions α
µ hi(t/µ) (where α is a constant) we obtain that ā = 1 + αĀ, b̄ = 1 + αB̄

in (A.4), i.e. we have a macroscopic change in the speed of rotation close to the origin (of
order O(1)). However, if α is not small enough, the whole structure of the bifurcation pattern
might be washed away when the whole non-autonomous perturbation problem is considered
(and not just its averaged system as in [1,2]): in fact we need α = o(ε) to apply our techniques
and to obtain the results in Sections 3.1, 3.2. This might depend on the method of proof we
used, but we believe that some smallness condition on α is most probably needed.

References

[1] R. Bellman, J. Bentsman, S. Meerkov, Vibrational control of systems with Arrhenius dy-
namics, J. Math. Anal. Appl. 91(1983), 152–191. https://doi.org/10.1016/0022-247X(83)
90099-9; MR0688539

[2] R. Bellman, J. Bentsman, S. Meerkov, Nonlinear systems with fast parametric oscilla-
tions, J. Math. Anal. Appl. 97(1983), 572–589. https://doi.org/10.1016/0022-247X(83)
90212-3; MR0723248

[3] N. Bogoliubov, Y. Mitropolskii, Asymptotic methods in nonlinear oscillation theory (in Rus-
sian), Moscow, Fitzmatgiz, 1963. MR0149036

[4] E. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New
York, 1955. MR0069338

[5] W. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Vol. 377,
Springer-Verlag, Berlin, 1978. https://doi.org/10.1007/BFb0067780; MR0481196

[6] S. Diliberto, Perturbation theorems for periodic surfaces I, Rend. Circ. Mat. Palermo
9(1960), 265–299. https://doi.org/10.1007/BF02851248; MR0142852

https://doi.org/10.1016/0022-247X(83)90099-9
https://doi.org/10.1016/0022-247X(83)90099-9
https://www.ams.org/mathscinet-getitem?mr=0688539
https://doi.org/10.1016/0022-247X(83)90212-3
https://doi.org/10.1016/0022-247X(83)90212-3
https://www.ams.org/mathscinet-getitem?mr=0723248
https://www.ams.org/mathscinet-getitem?mr=0149036
https://www.ams.org/mathscinet-getitem?mr=0069338
https://doi.org/10.1007/BFb0067780
https://www.ams.org/mathscinet-getitem?mr=0481196
https://doi.org/10.1007/BF02851248
https://www.ams.org/mathscinet-getitem?mr=0142852


Hopf bifurcation with rapidly varying coefficients 23

[7] S. Diliberto, New results in periodic surfaces and the averaging principle, in: Proc. U.S.–
Japan Seminar on Differential and Functional Equations (Minneapolis, Minn., 1967), Benjamin,
New York, 1967, pp. 49–87. MR0249725

[8] B. Fayad, Weak mixing for reparametrized linear flows on the torus, Ergodic The-
ory Dynam. Systems 22(2002), 187–201. https://doi.org/10.1017/S0143385702000081;
MR1889570

[9] B. Fayad, Analytic mixing reparametrizations of irrational flows, Ergodic Theory Dynam.
Systems 22(2002), 437–468. https://doi.org/10.1017/S0143385702000214; MR1898799

[10] A. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377,
Springer-Verlag, Berlin, 1974. https://doi.org/10.1007/BFb0070324; MR0460799

[11] R. Fabbri, R. Johnson, K. Palmer, Another look at averaging and integral manifolds, J.
Difference Equ. Appl. 13(2007), 723–739. https://doi.org/10.1080/10236190701479002;
MR2343028

[12] M. Franca, R. Johnson, V. Muñoz-Villarragut, On the nonautonomous Hopf bi-
furcation problem, Discrete Contin. Dyn. Syst. Ser. S 9(2016), No. 4, 1119–1148. https:
//doi.org/10.3934/dcdss.2016045; MR3543649

[13] M. Franca, R. Johnson, Remarks on nonautonomous bifurcation theory, Rend. Is-
tit. Mat. Univ. Trieste 49(2017), 215–243. https://doi.org/10.13137/2464-8728/16214;
MR3748512

[14] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math.
83(1961), 573–601. https://doi.org/10.2307/2372899; MR0133429

[15] A. González-Enríquez, A non-perturbative theorem on conjugation of torus diffeo-
morphisms to rigid rotations, preprint, 2005. https://pdfs.semanticscholar.org/9071/
053327fe6c2fa6f06d633a89f56c97137836.pdf

[16] A. González-Enríquez, J. Vano, Estimate of smoothing and composition with ap-
plications to conjugation problems, J. Dynam. Differential Equations 20(2008), 239–270.
https://doi.org/10.1007/s10884-006-9060-z; MR2385728

[17] J. Hale, Ordinary differential equations, Wiley-Interscience, New York, 1969. MR0419901

[18] J. Hale, H. Koçak, Dynamics and bifurcations, Texts in Applied Mathematics,
Vol. 3, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-4426-4;
MR1138981

[19] W. Huang, Y. Yi, Almost periodically forced circle flows, J. Funct. Anal. 257(2009), 832–
902. https://doi.org/10.1016/j.jfa.2008.12.005; MR2530846

[20] R. Johnson, Concerning a theorem of Sell, J. Differential Equations 30(1978), 324–339.
https://doi.org/10.1016/0022-0396(78)90004-9; MR0521857

[21] R. Johnson, F. Mantellini, A nonautonomous transcritical bifurcation problem with an
application to quasi-periodic bubbles, Discrete Contin. Dyn. Syst. 9(2003), 209–224. https:
//doi.org/10.3934/dcds.2003.9.209; MR1951319

https://www.ams.org/mathscinet-getitem?mr=0249725
https://doi.org/10.1017/S0143385702000081
https://www.ams.org/mathscinet-getitem?mr=1889570
https://doi.org/10.1017/S0143385702000214
https://www.ams.org/mathscinet-getitem?mr=1898799
https://doi.org/10.1007/BFb0070324
https://www.ams.org/mathscinet-getitem?mr=0460799
https://doi.org/10.1080/10236190701479002
https://www.ams.org/mathscinet-getitem?mr=2343028
https://doi.org/10.3934/dcdss.2016045
https://doi.org/10.3934/dcdss.2016045
https://www.ams.org/mathscinet-getitem?mr=3543649
https://doi.org/10.13137/2464-8728/16214
https://www.ams.org/mathscinet-getitem?mr=3748512
https://doi.org/10.2307/2372899
https://www.ams.org/mathscinet-getitem?mr=0133429
https://pdfs.semanticscholar.org/9071/053327fe6c2fa6f06d633a89f56c97137836.pdf
https://pdfs.semanticscholar.org/9071/053327fe6c2fa6f06d633a89f56c97137836.pdf
https://doi.org/10.1007/s10884-006-9060-z
https://www.ams.org/mathscinet-getitem?mr=2385728
https://www.ams.org/mathscinet-getitem?mr=0419901
https://doi.org/10.1007/978-1-4612-4426-4
https://www.ams.org/mathscinet-getitem?mr=1138981
https://doi.org/10.1016/j.jfa.2008.12.005
https://www.ams.org/mathscinet-getitem?mr=2530846
https://doi.org/10.1016/0022-0396(78)90004-9
https://www.ams.org/mathscinet-getitem?mr=0521857
https://doi.org/10.3934/dcds.2003.9.209
https://doi.org/10.3934/dcds.2003.9.209
https://www.ams.org/mathscinet-getitem?mr=1951319


24 M. Franca and R. Johnson

[22] R. Johnson, Y. Yi, Hopf bifurcation from non-periodic solutions of differential equa-
tions II, J. Differential Equations 107(1994), 310–340. https://doi.org/10.1006/jdeq.

1994.1015; MR1264525

[23] P. Kloeden, M. Rasmussen, Nonautonomous dynamical systems, Mathematical Surveys and
Monographs, Vol. 176, American Mathematical Society, Providence, RI, 2011. https://
doi.org/10.1090/surv/176; MR2808288

[24] N. Krylov, N. Bogoliubov, La théorie generale de la mesure dans son application à
l’étude des systèmes dynamiques de la mécanique non linéare (in French), Ann. of Math.
(2) 38(1937), 65–113. https://doi.org/10.2307/1968511; MR1503326

[25] Y. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, Berlin, 1995. https:
//doi.org/10.1007/978-1-4757-2421-9; MR1344214

[26] M. Hirsch, C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583
Springer-Verlag, New York, 1977. MR0501173

[27] C. Núñez, R. Obaya, A non-autonomous bifurcation theory for deterministic scalar dif-
ferential equations, Discrete Contin. Dyn. Syst. Ser. B 9(2008), 701–730. https://doi.org/
10.3934/dcdsb.2008.9.701; MR2379433

[28] C. Pötzsche, Nonautonomous bifurcation of bounded solutions II: a shovel bifurcation
pattern, Discrete Contin. Dyn. Syst. 31(2011), 941–973. https://doi.org/10.3934/dcds.
2011.31.941; MR2825645

[29] D. Papini, F. Zanolin, Periodic points and chaotic-like dynamics of planar maps as-
sociated to nonlinear Hill’s equations with indefinite weight, Georgian Math J. 9(2002),
339–366. https://doi.org/10.1515/GMJ.2002.339; MR1916073

[30] M. Rasmussen, Attractivity and bifurcation for nonautonomous dynamical systems, Lecture
Notes in Mathematics, Vol. 1907, Springer, Berlin, 2007. https://doi.org/10.1007/

978-3-540-71225-1; MR2327977

[31] W. Shen, Y. Yi, Almost automorphic and almost periodic dynamics in skew-product
semiflows, Mem. Amer. Math. Soc. 137(1998), No. 647, 1–93. https://doi.org/10.1090/
memo/0647; MR1445493

[32] Y. Yi, A generalized integral manifold theorem, J. Differential Equations 102(1993), 153–187.
https://doi.org/10.1006/jdeq.1993.1026; MR1209981

https://doi.org/10.1006/jdeq.1994.1015
https://doi.org/10.1006/jdeq.1994.1015
https://www.ams.org/mathscinet-getitem?mr=1264525
https://doi.org/10.1090/surv/176
https://doi.org/10.1090/surv/176
https://www.ams.org/mathscinet-getitem?mr=2808288
https://doi.org/10.2307/1968511
https://www.ams.org/mathscinet-getitem?mr=1503326
https://doi.org/10.1007/978-1-4757-2421-9
https://doi.org/10.1007/978-1-4757-2421-9
https://www.ams.org/mathscinet-getitem?mr=1344214
https://www.ams.org/mathscinet-getitem?mr=0501173
https://doi.org/10.3934/dcdsb.2008.9.701
https://doi.org/10.3934/dcdsb.2008.9.701
https://www.ams.org/mathscinet-getitem?mr=2379433
https://doi.org/10.3934/dcds.2011.31.941
https://doi.org/10.3934/dcds.2011.31.941
https://www.ams.org/mathscinet-getitem?mr=2825645
https://doi.org/10.1515/GMJ.2002.339
https://www.ams.org/mathscinet-getitem?mr=1916073
https://doi.org/10.1007/978-3-540-71225-1
https://doi.org/10.1007/978-3-540-71225-1
https://www.ams.org/mathscinet-getitem?mr=2327977
https://doi.org/10.1090/memo/0647
https://doi.org/10.1090/memo/0647
https://www.ams.org/mathscinet-getitem?mr=1445493
https://doi.org/10.1006/jdeq.1993.1026
https://www.ams.org/mathscinet-getitem?mr=1209981

	Introduction
	Preliminaries
	Statement of the main results
	Existence of positively invariant annulus and negatively invariant disc
	Stronger assumptions: existence of an asymptotically stable integral manifold
	Some comments on the size of the parameters

	Proofs
	Proof of Propositions 3.8 and 3.9.
	Proof of Theorems 3.12 and 3.14

	Some remarks on the dynamics on MÂµ
	Concerning the change of variables by Bellman et al.

