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Bounded solutions for a class of Hamiltonian systems
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Abstract. We obtain solutions bounded for all t ∈ (−∞, ∞) of systems of ordinary
differential equations as limits of the solutions of the corresponding Dirichlet problems
on (−L, L), with L → ∞. Using the variational approach, we derive a priori estimates
for the corresponding Dirichlet problems, allowing passage to the limit, via a diagonal
sequence.

Keywords: solutions bounded for all t, a priori estimates.

2010 Mathematics Subject Classification: 34B15.

1 Introduction

For −∞ < t < ∞, we consider the equation

u′′ − a(t)u3 = f (t) , (1.1)

with continuous functions a(t) > 0 and f (t). Clearly, “most” solutions of (1.1) blow up in
finite time, for both increasing and decreasing t. By using two-dimensional shooting, S.P.
Hastings and J.B. McLeod [2] showed that the equation (1.1) has a uniformly bounded on
(−∞, ∞) solution, in case of constant a(t) and uniformly bounded f (t). Their proof used
some non-trivial topological property of a plane. We use passage to the limit as in P. Korman
and A. C. Lazer [4] to obtain the existence of a solution uniformly bounded on (−∞, ∞) for
(1.1), and for similar equations. We produce a bounded solution as a limit of the solutions of
the corresponding Dirichlet problems

u′′ − a(t)u3 = f (t) for t ∈ (−L, L), u(−L) = u(L) = 0 , (1.2)

as L → ∞. If f (t) is bounded, it follows by the maximum principle that the solution of (1.2)
satisfies a uniform in L a priori estimate, which allows passage to the limit.

Then we use a variational approach motivated by P. Korman and A.C. Lazer [4] (see also
P. Korman, A. C. Lazer and Y. Li [5]), to get a similar result for a class of Hamiltonian systems.
Again, we consider the corresponding Dirichlet problem on (−L, L), which we solve by the
minimization of the corresponding functional, obtaining in the process a uniform in L a priori
estimate, which allows passage to the limit as L→ ∞.
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2 A model equation

Theorem 2.1. Consider the equation (for u = u(t))

u′′ − a(t)u3 = f (t) , (2.1)

where the given functions a(t) ∈ C(R) and f (t) ∈ C(R) are assumed to satisfy

| f (t)| ≤ M, for all t ∈ R, and some constant M > 0 ,

and
a0 ≤ a(t) ≤ a1, for all t ∈ R, and some constants a1 ≥ a0 > 0 .

Then the problem (2.1) has a classical solution uniformly bounded for all t ∈ R, i.e., |u(t)| ≤ K for all
t ∈ R, and some K > 0. Such a solution is unique.

Proof. We shall obtain a bounded solution as a limit of solutions to the corresponding Dirichlet
problems

u′′ − a(t)u3 = f (t) for t ∈ (−L, L), u(−L) = u(L) = 0 , (2.2)

as L → ∞. Large positive constants are supersolutions of this problem, while large negative
constants provide subsolutions, which proves the existence of a solution, bounded uniformly
in L, see e.g, L. Evans [1].

We claim that there is a uniform in L bound in C2[−L, L] for any solution of (2.2), i.e., there
is a constant K > 0, so that for all t ∈ [−L, L], and all L > 0,

|u(t)| ≤ K , |u′(t)| ≤ K , and |u′′(t)| ≤ K . (2.3)

The first of these estimates is already established. From the equation (2.2) we get a uniform
bound on |u′′(t)|. Note that for all t ∈ R, we can write

u(t + 1) = u(t) + u′(t) +
∫ t+1

t
(t + 1− ξ)u′′(ξ) dξ, (2.4)

from which we immediately deduce a uniform bound on |u′(t)|.

We now take a sequence Lj → ∞ , and denote by uj(t) ∈ H1
0(−∞, ∞) the bounded solution

of the problem (2.2) on the interval (−Lj, Lj), extended as zero to the outside of the interval
(−Lj, Lj). For all t1 < t2, writing

∣∣uj(t2)− uj(t1)
∣∣ = ∣∣∣∣∫ t2

t1

u′j dt
∣∣∣∣ ≤ √t2 − t1

(∫ t2

t1

(
u′j
)2

dt
)1/2

≤ K (t2 − t1) , (2.5)

in view of (2.3), we conclude that the sequence {uj(t)} is equicontinuous and uniformly
bounded on every interval [−Lp, Lp] . By the Arzelà–Ascoli theorem, it has a uniformly con-
vergent subsequence on every [−Lp, Lp] . So let {u1

jk
} be a subsequence of {uj} that converges

uniformly on [−L1, L1] . Consider this subsequence on [−L2, L2] and select a further subse-
quence {u2

jk
} of {u1

jk
} that converges uniformly on [−L2, L2] . We repeat this procedure for all

p, and then take the diagonal sequence {uk
jk
} . It follows that it converges uniformly on any

bounded interval to a function u(t) .
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Expressing
(
uk

jk

)′′ from the equation (2.2), we conclude that the sequence
{(

uk
jk

)′′} , and

then also
{(

uk
jk

)′} (in view of (2.4)), converge uniformly on bounded intervals. Denote v(t) :=

limk→∞
(
uk

jk

)′′
(t). For t belonging to any bounded interval (a, b), similarly to (2.4), we write

uk
jk(t) = uk

jk(a) + (t− a)
(

uk
jk

)′
(a) +

∫ t

a
(t− ξ)

(
uk

jk

)′′
(ξ) dξ ,

and conclude that u(t) ∈ C2(−∞, ∞), and u′′(t) = v(t). Hence, we can pass to the limit in the
equation (2.2), and conclude that u(t) solves this equation on (−∞, ∞). We have |u(t)| ≤ K
on (−∞, ∞), proving the existence of a uniformly bounded solution.

Turning to the uniqueness, the difference w(t) of any two bounded solutions u(t) and ũ(t)
of (2.1) would be a bounded for all t solution of the linear equation

w′′ − b(t)w = 0 , (2.6)

with b(t) = a(t)(u2 + uũ + ũ2) > 0. It follows that w(t) is convex when it is positive. If at
some t0, w(t0) > 0 and w′(t0) > 0 (w′(t0) < 0), then w(t) is unbounded as t→ ∞ (t→ −∞), a
contradiction. In case w(t0) < 0 for some t0, we observe that −w(t) is also a solution of (2.6),
and reach the same contradiction. Therefore, w ≡ 0.

We now discuss the dynamical significance of the bounded solution, established in The-
orem 2.1, let us call it u0(t). The difference of any two solutions of (2.1) satisfies (2.6). We
see from (2.6) that any two solutions of (2.1) intersect at most once. Also from our analysis
of the equation (2.6) above, we can expect u0(t) to have one-dimensional stable manifold as
t → ±∞, and any solution not on the stable manifold to become unbounded. It follows that
u0(t) provides the only possible asymptotic form of the solutions that are bounded as t → ∞
(or t→ −∞), while all other solutions become unbounded.

Next we show that the conditions of this theorem cannot be completely removed. If
a(t) ≡ 0, then for f (t) = 1, all solutions of (2.1) are unbounded as t → ±∞. The same
situation may occur in case a(t) > 0, if f (t) is unbounded. Indeed, the equation

u′′ − u3 = 2 cos t− t sin t− t3 sin3 t (2.7)

has a solution u(t) = t sin t. Let ũ(t) be any other solution of (2.7). Then w(t) = u(t)− ũ(t)
satisfies (2.6), with b(t) = u2 + uũ + ũ2 > 0. Clearly, w(t) cannot have points of positive local
maximum, or negative local minimum. But then ũ(t) cannot remain bounded as t → ±∞,
since in such a case the function w(t) would be unbounded with points of positive local
maximum and negative local minimum. It follows that all solutions of (2.7) are unbounded as
t→ ±∞.

Remark. A similar result holds for the equation

u′′ + h(t, u) = 0 ,

where h ∈ C0,1(R×R), provided that the corresponding Dirichlet problem on (−L, L) has a
supersolution and subsolution pair, uniformly in L.
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3 Bounded solutions of Hamiltonian systems

We use variational approach to get a similar result for a class of Hamiltonian systems. We
shall be looking for uniformly bounded solutions u ∈ H1(R; Rm) of the system

u′′i − a(t)Vzi(u1, u2, . . . , um) = fi(t) , i = 1, . . . , m . (3.1)

Here ui(t) are the unknown functions, a(t) and fi(t) are given functions on R, i = 1, . . . , m,
and V(z) is a given function on Rm.

Theorem 3.1. Assume that a(t) ∈ C(R) satisfies a(t) ≥ a0 for all t, and some constant a0 > 0.
Assume that fi(t) ∈ C(R), with | fi(t)| ≤ M for some M > 0 and all i and t ∈ R. Also assume that
V(z) ∈ C1(Rm) satisfies

V(z) ≥ α1|z|2 − α2 , for some α1, α2 > 0, and all z ∈ Rm . (3.2)

Assume also that
∫ ∞
−∞ f 2

i (t) dt < ∞, for all i. Then the system (3.1) has a uniformly bounded solution
ui(t) ∈ H1(R), i = 1, . . . , m (i.e., for some constant K > 0, |ui(t)| < K for all t ∈ R, and all i). This
solution is in fact homoclinic, i.e., lim|t|→∞ u(t) = 0.

Proof. We may assume that α2 = 0 in (3.2) (replacing V by V + α2). As in the previous
section, we approximate solution of (3.1) by solutions of the corresponding Dirichlet problems
(i = 1, . . . , m)

u′′i − a(t)Vzi(u) = fi(t) , for t ∈ (−L, L), u(−L) = u(L) = 0 , (3.3)

as L→ ∞. Solutions of (3.3) can be obtained as critical points of the corresponding variational
functional J(u) :

[
H1

0(−L, L)
]m → R defined as

J(u) :=
∫ L

−L

[
m

∑
i=1

(
1
2

u′i
2
(t) + ui(t) fi(t)

)
+ a(t)V(u(t))

]
dt .

By (3.2), we have

J(u) ≥ c1

m

∑
i=1
‖ui‖H1(−L,L) − c2 , (3.4)

for some positive constants c1 and c2, uniformly in L, so that J(u) is bounded from below,
coercive and convex in u′. Hence, J(u) has a minimizer in

[
H1

0(−L, L)
]m, giving us a classical

solution of (3.3), see e.g., L. Evans [1].

We now take a sequence Lj → ∞ , and denote by uj(t) ∈ H1(R; Rm) a vector solution of the
problem (3.3) on the interval (−Lj, Lj), extended as zero vector to the outside of the interval
(−Lj, Lj). The crucial observation (originated from [4]) is that the variational method provides
a uniform in L and j bound on ‖uj(t)‖H1(−L,L). Indeed, we have H1

0(−L, L) ⊂ H1
0(−L̃, L̃) for

L̃ > L. If we now denote by ML the minimum value of J(u) on
[
H1

0(−L, L)
]m, then ML is

non-increasing in L (there are more competing functions for larger L), and in particular, using
(3.4),

c1

m

∑
i=1
‖uj,i‖H1(−L,L) − c2 ≤ J(uj) ≤ M1 , (3.5)
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if Lj > 1. By Sobolev’s embedding in one dimension, we conclude a L∞ bound on uj,i,
uniformly in L. Indeed, we write w = uj,i, and let t0 be the point of maximum of |w(t0)|. Then
it follows from (3.5) that

w2(t0) = 2
∫ t0

−L
w(t)w′(t) dt ≤ 2

(∫ L

−L
w2(t) dt

) 1
2
(∫ L

−L
w′2(t) dt

) 1
2

≤ C

for some constant C independent of L. The formula (3.5) also provides us with a uniform
in j bound on

∫ Lj
−Lj

∑m
i=1
(
u′j,i(t)

)2 dt, from which we conclude that the sequence {uj(t)} is
equicontinuous on every bounded interval (as in (2.5) above). With the sequence {uj(t)}
equicontinuous and uniformly bounded on every interval [−Lp, Lp] , it converges uniformly
to some u ∈ C(R; Rm) on [−Lp, Lp] . From the equation (3.3), we have uniform convergence
of {u′′j } on bounded intervals, and hence uniform convergence of {u′j} follows from (2.4). We
complete the existence proof by going to the limit via diagonal sequence, as in the proof of
Theorem 2.1.

The solution obtained is in fact homoclinic, as follows from the inequality (for continuous
u : R→ Rm with u′ ∈ L2

loc(R; Rm))

|u(t)| ≤
√

2
(∫ t+1/2

t−1/2

(
|u(s)|2 + |u′(s)|2

)
ds
)1/2

derived on p. 385 of [3], in view of the uniform in L estimate on ‖u‖[H1(−L,L)]m that we obtained
above. However, it is not clear if lim|t|→∞ u′(t) = 0.

Example 3.2. Consider the case m = 2, V(z) = 1
2

(
z2

1 + z1z2 + z2
2
)
+ h(z1, z2), with h(z1, z2) > 0,

continuously differentiable and bounded. We consider the system{
u′′1 − a(t)

(
u1 +

1
2 u2 + hz1(u1, u2)

)
= f1(t),

u′′2 − a(t)
( 1

2 u1 + u2 + hz2(u1, u2)
)
= f2(t),

where the functions a(t), f1(t), f2(t) satisfy the assumptions of Theorem 3.1. We conclude the
existence of a uniformly bounded for all t ∈ R homoclinic solution. Observe that we may
replace the condition fi(t) ∈ L2(−∞, ∞) by | fi(t)| ≤ M for some M > 0 and all t ∈ R, i = 1, 2.
The estimate (3.4) still follows if we add a large positive constant to V.

4 Bounded solutions for a class of systems

In this section we provide a generalization of Theorem 2.1 to systems that are not necessarily
Hamiltonian, and thus do not necessarily have variational structure. We begin with an a priori
estimate. By ‖z‖ we denote the Euclidean norm of z ∈ Rm.

Lemma 4.1. Let u = (u1, ..., um) ∈ C2(R; Rm) be a classical solution of

u′′i (x)− λHi (u(x)) = λ fi(x) for x ∈ (−L, L) , ui(−L) = ui(L) = 0 , (4.1)

i = 1, 2, . . . , m, where λ ∈ [0, 1] is a parameter. Assume that the functions Hi(z) ∈ C(Rm, R) satisfy

lim
‖z‖→∞

∑m
i=1 zi Hi(z)
∑m

i=1 |zi|
= ∞ . (4.2)
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Assume also that for some M > 0 the functions fi(x) ∈ C(R, R) satisfy

| fi(x)| ≤ M , for all i, and x ∈ R . (4.3)

Then there is a constant K0 > 0 such that for all i, and x ∈ [−L, L] we have

|ui(x)| ≤ K0 , uniformly in L > 1, and λ ∈ [0, 1] . (4.4)

Proof. Let x0 denote any point of maximum of q(x) := ∑m
i=1 u2

i (x) on [−L, L]. If x0 = ±L, then
the estimate (4.4) holds trivially, so assume that x0 ∈ (−L, L), and then

0 ≥ 1
2

q′′(x0) =
m

∑
i=1

(
ui(x0)u′′i (x0) + u′i

2
(x0)

)
≥

m

∑
i=1

ui(x0)u′′i (x0) . (4.5)

By (4.2) we can fix K0 so that ∑m
i=1 zi Hi(z) > M ∑m

i=1 |zi| for all ‖z‖ > K0. We claim that
|q(x0)| = ‖u(x0)‖2 ≤ K2

0, which provides the desired a priori estimate. Indeed, if one assumes
that |q(x0)| > K2

0, then using (4.5) and (4.1), we get

0 ≥
m

∑
i=1

ui(x0)u′′i (x0) = λ
m

∑
i=1

[ui(x0)Hi(u(x0)) + fi(x0)ui(x0)]

≥ λ
m

∑
i=1

[ui(x0)Hi(u(x0))−M|ui(x0)|] > 0 ,

for λ ∈ (0, 1], which is a contradiction. At λ = 0, the estimate holds trivially.

Theorem 4.2. Assume that the continuous functions Hi(u) and fi(x) satisfy the conditions (4.2) and
(4.3). Then the system

u′′i (x)− Hi (u1(x), . . . , um(x)) = fi(x) , i = 1, 2, . . . , m (4.6)

has a classical solution, uniformly bounded for all x ∈ R, i.e., |ui(x)| ≤ K for all x ∈ R, 1 ≤ i ≤ m,
and some K > 0.

Proof. We obtain a bounded solution as a limit of the solutions of the corresponding Dirichlet
problems (4.1) at λ = 1. Existence of such solutions follows by Schaefer’s fixed point theorem,
see e.g., [1], in view of the a priori estimate given by Lemma 4.1. Using arguments similar to
those in Theorem 2.1, we obtain estimates that are similar to (2.3). This enables us to take the
limit as L → ∞ and carry out the diagonal argument as in Theorem 2.1 to obtain a bounded
solution to the system (4.6).
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