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Abstract

We study the existence and asymptotic behaviour of the global
solutions of the nonlinear equation

Ut — Apu+ (=A)%up + g(u) = f
where 0 < o < 1 and ¢ does not satisfy the sign condition g(u)u > 0.
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1. Introduction

The study of global existence and asymptotic behaviour for initial-boundary
value problems involving nonlinear operators of the type

n

u — Y _{0i(tg)}a, — Aup = f(t,x) in (0,T) x Q

i=1

goes back to Greenberg, MacCamy & Mizel [3], where they considered the
one-dimensional case with smooth data. Later, several papers have appeared
in that direction, and some of its important results can be found in, for
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example, Ang & Pham Ngoc Dinh [1], Biazutti [2], Nakao [8], Webb [10]
and Yamada [11]. In all of the above cited papers, the damping term —Auwuy
played an essential role in order to obtain global solutions. Our objective is
to study this kind of equations under a weaker damping given by (—A)“u;
with 0 < a < 1. This approach was early considered by Medeiros and
Milla Miranda [6] to Kirchhoff equations. We also consider the presence of
a forcing term g(z,u) that does not satisfy the sign condition g(z,u)u > 0.
Our study is based on the pseudo Laplacian operator

n —2
0 ou |P7% ou
Ay — —
which is used as a model for several monotone hemicontinuous operators.
Let @ be a bounded domain in R™ with smooth boundary 0. We
consider the nonlinear initial-boundary value problem
wn — Agut (—A)uy + gla,u) = f(t,2) in (0,T) x 2,
(1.1) u=0 on (0,7) x 0%,
w(0,2) =up and w(0,2) =u; in €,

where 0 < o < 1 and p > 2. We prove that, depending on the growth of
g, problem (1.1) has a global weak solution without assuming small initial
data. In addition, we show the exponential decay of solutions when p = 2
and algebraic decay when p > 2. The global solutions are constructed
by means of the Galerkin approximations and the asymptotic behaviour is
obtained by using a difference inequality due to M. Nakao [7]. Here we only
use standard notations. We often write u(t) instead u(t, z) and u/(t) instead
ut(t, ). The norm in LP(Q) is denoted by || - ||, and in Wol’p(ﬂ) we use the

norm
n
lallf ), = lua, |15
j=1

For the reader’s convenience, we recall some of the basic properties of the
operators used here. The degenerate operator —A,, is bounded, monotone
and hemicontinuous from Wol’p(Q) to W=14(Q), where p~! + ¢! = 1. The
powers for the Laplacian operator is defined by

(—A)u =Y A% (u,¢;)@;,
j=1

where 0 < A1 < Ao < A3 < --- and 1, 2, 3, are, respectively, the
sequence of the eigenvalues and eigenfunctions of —A in H &(Q) Then

[ullp(=ayy = [I(=A)%ul2 Vue D(-A))
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and D((=A)®) ¢ D((—A)P) compactly if a > 3 > 0. In particular, for
p>2and 0 <a <1, WyP(Q) = D((—A)*/2) — L2().

2. Existence of Global Solutions

Let g : 2 x R — R be a continuous function satisfying the growth condition
lg(z,u)|] <alul]” P +b VY(z,u) € Q xR, (2.1)
where a, b are positive constants, 1 < o < pn/(n—p)ifn >pandl <o < 00

if n <p.

Theorem 2.1 Let us assume condition (2.1) with o < p. Then given ug €
Wol’p(Q), up € L2(Q) and f € L?(0,T;L?(Q)), there exists a function u :
(0,T7) x Q@ — R such that

ue L>(0,T;WyP(Q)), (2.2)

u' e L®(0,T; L*(Q) N L*(0,T; D((—A)2)), (2.3)

w(0) =ug and u'(0)=wu; ae. in €, (2.4)

ug — Apu + (—A) %y 4+ g(w,u) = £ in L2(0,T; W H9(Q)), (2.5)

where p~t + ¢ 1 = 1.

Next we consider an existence result when ¢ > p. In this case, the global
solution is obtained with small initial data. For each m € N we put

Y = §Hu1mH% + %HUOmH?,p + TOHUOmH({,p T g

where C} > 0 is the Sobolev constant for the inequality ||u||x < Cgllullip,
when Wol’p(ﬂ) < L¥(Q). We also define the polynomial Q by

1 aCly

Qz) = %Zp -

27,
which is increasing in [0, zo], where
=1
20 = (2aCy) o>
is its unique local maximum. We will assume that

l[uoll1,p < 20 (2.6)
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and

T
g IR < Qo) (2.7

where v = lim;,— 00 Yim-
Theorem 2.2 Suppose that condition (2.1) holds with o > p. Suppose in

addition that inital data satisfy (2.6) and (2.7). Then there exists a function
u:(0,T) x Q — R satisfying (2.2)-(2.5).

Proof of Theorem 2.1: Let r be an integer for which H{(2) — Wol’p(ﬂ)
is continuous. Then the eigenfunctions of —A"w; = ajw; in Hj(S2) yields
a “Galerkin” basis for both H}(2) and L?(f2). For each m € N, let us put
Vi = Span{wy, wa, - -+, w,, }. We search for a function

t)=> kjm(t)w
j=1

such that for any v € Vi, u,(t) satisfies the approximate equation

/{U" Aptin (1) + (=2) 1y, (1) + g2, um (2)) — f(t,2)}vdz =0 (2.8)
with the initial conditions
Um(0) = ugm and  ul,(0) = Ui,
where ug,, and uy,, are chosen in V,,, so that
Ugm — Up in Wol’p(ﬂ) and w1y, — up in L*(Q). (2.9)

Putting v = wj, j = 1,---,m, we observe that (2.8) is a system of ODEs
in the variable ¢ and has a local solution w,,(¢) in a interval [0,%¢,,). In the
next step we obtain the a priori estimates for the solution u,,(t) so that it
can be extended to the whole interval [0, 7.

A Priori Estimates: We replace v by u/,(t) in the approximate equation
(2.8) and after integration we have

NJ

SO + Sm @18, + [ 18T ds + [ Gloum)ie

t 1 1
< /0 £ el ()2 ds + 5wl + o, + /Q Gz, up)dz
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where G(z,u) = [’ g(x,s)ds. Now from growth condition (2.1) and the
Sobolev embedding, we have that

a
4|G($»Um(f))|d$ < —Collum @7 p + bC|um ®)l|1p- (2.10)
But since p > o, there exists a constant C' > 0 such that

1
/Q Gl m)lde < - ()1, + C

and then we have

MI

1 1 3
Sl @13 + 5 Sl (®) / (=) Zup, (5)][3 ds

t 1 3 —
S/O 1 ()l () ]2 ds + 5 uam 13 + oplltomllt, +2C.

Using the convergence (2.9) and the Gronwall’s lemma, there exists a con-
stant C' > 0 independent of ¢, m such that

V]

etz (£)113 + e (£) / I(=2)2 ), (s)]3 ds < C. (2.11)

With this estimate we can extend the approximate solutions w,,(t) to the
interval [0, 7] and we have that

(um) is bounded in  L>®(0,T; Wy (Q)), (2.12)
(ul,) is bounded in L>(0,T;L*()), (2.13)
(ul)) is bounded in L2(0,T;D((—A)%)), (2.14)
and
(=Apuy,) is bounded in  L*(0, T; W~14(Q)). (2.15)

Now we are going to obtain an estimate for ( ). Since our Galerkin basis
was taken in the Hilbert space H" () C WO P(Q), we can use the standard
projection arguments as described in Lions [4]. Then from the approximate
equation and the estimates (2.12)-(2.15) we get

(u”) is bounded in L2(0,T; H "(2)). (2.16)

m
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Passage to the Limit: From (2.12)-(2.14), going to a subsequence if neces-
sary, there exists u such that

U — u weakly star in - L>(0,T; W, ?(2)), (2.17)
ul, —u'  weakly star in  L>(0,T; L*(f)), (2.18)
u — ' weakly in  L?(0,T; D((—A)?), (2.19)

and in view of (2.15) there exists x such that
—Apuy — x  weakly star in - L>(0,T; W~ 19(Q)). (2.20)
By applying the Lions-Aubin compactness lemma we get from (2.12)-(2.13)
Uy — u  strongly in - L*(0,T; L(Q)), (2.21)
and since D((—A)2) — L%(Q) compactly, we get from (2.14) and (2.16)
ul, —u' strongly in  L%(0,T; L*(Q)). (2.22)

Using the growth condition (2.1) and (2.21) we see that

T
/ / (9, (£, 2))| 75T dardt
0 Q

is bounded and
g(x,up) — g(xz,u) ae. in (0,7) x Q.
Therefore from Lions [4] (Lemma 1.3) we infer that
9(#,upm) — g(z,u) weakly in L1 (0,T; Lo-1(Q2)). (2.23)

With these convergence we can pass to the limit in the approximate equation
and then

d

27 (W (0:0) + (X(#),0) + (=8)*/ (1), v) + (g(z, u()),0) = (f(t),0) (2:24)

for all v € WHP(€), in the sense of distributions. This easily implies that
(2.2)-(2.4) hold. Finally, since we have the strong convergence (2.22), we
can use a standard monotonicity argument as done in Biazutti [2] or Ma &
Soriano [5] to show that x = —Apu. This ends the proof. O
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Proof of Theorem 2.2: We only show how to obtain the estimate (2.11).
The remainder of the proof follows as before. We apply an argument made
by L. Tartar [9]. From (2.10) we have

({/2bC1 )1

aC
N+ 5 luml + g

/ G, ) |dar <
Q

g

and therefore

SO+ QU 1) + [ 1A F (9] ds

t
Svm+AHﬂ@hMM@M®-

Since N
1(=2)Zug, (s)ll2 = A7 [Jup, (B)]2, (2.25)
where )\ is the first eigenvalue of —A in H}(£2), this implies that
1, , 9 17 2
Flum @2 + QUlum)l1p) < m + 53 ; 1 (®)I2 dt. (2.26)
1

We claim that there exists an integer N such that
lum@)|lip <20 Vtel0,t,) m>N (2.27)

Suppose the claim is proved. Then Q(||um(t)|/1,,) > 0 and from (2.7) and
(2.26), ||ul,(t)]l2 is bounded and consequently (2.11) follows.

Proof of the Claim: Suppose (2.27) false. Then for each m > N, there exists
t € [0,ty) such that [lum ()1, > 20. We note that from (2.6) and (2.9)
there exists Ny such that

[m(0)[lLp <20 V> No.
Then by continuity there exists a first ¢, € (0,¢,,) such that
[[um (E) 1.0 = 20, (2.28)

from where

Qlum(B)ll1p) 20 Vit €[0,8,].
Now from (2.7) and (2.26), there exist N > Ny and 3 € (0, z) such that

0.< Sl + QUlum (1) < Q(B) Vi [0.65] Ym >N,
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Then the monotonicity of @ in [0, zg] implies that
0 < Jum@llip < B<z20 Vet
and in particular, ||u.,,(t},)]/1,, < 20, which is a contradiction to (2.28). O

Remarks: From the above proof we have the following immediate conclu-
sion: The smallness of initial data can be dropped if either condition (2.1)
holds with o = p and coefficient a is sufficiently small, or ¢ > p and the sign
condition g(x,u)u > 0 is satisfied. O

3. Asymptotic Behaviour

Theorem 3.1 Let u be a solution of Problem (1.1) given by
(a) either Theorem 2.1 with the additional assumption: there exists p > 0
such that

g(x,u)u > pG(x,u) >0, (3.1)

(b) or Theorem 2.2.
Then there exists positive constants C and 6 such that

Il @13 + u(®)]}, < Cexp(—6t) if p=2,
or

S 8 .
I’ @13 + lu@®)f, < CA+1)72 if p>2.

The proof of Theorem 3.1 is based on the following difference inequality of
M. Nakao [7].

Lemma 3.1 (Nakao) Let ¢ : Rt — R be a bounded nonnegative function
for which there exist constants 8 > 0 and v > 0 such that

sup (6(s))'*7 < B(o(t) — Bt +1)) Vit >0.

t<s<t+1

Then
(1) If v =0, there exist positive constants C and 0 such that

o(t) < Cexp(—60t) Vt>0.

(1) If v > 0, there ezists a positive constant C' such that

s(t) <C+8)7 V>0
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Let us define the approximate energy of the system (1.1) by

1
Bn(®) = 501 + ey + [ Gaun()de. (32
Then the following two lemmas hold.

Lemma 3.2 There exists a constant k > 0 such that

kEm(t) < Jlum@)I7, +/Qg($,um(t))um(t)d$~ (3-3)

Proof. In the case (a), condition (3.3) is a direct consequence of (3.1). In
the case (b) the result follows from (2.27). In fact, from assumption (2.1)
with b = 0 we have

Cy
/ G, wn)lde < © 7 and / 1902t Ytmldz < aCl 7,
9} o Q

Then given § > 0,

el + /Q T S uumu . /Gmm

1)
_6/ G(m,um)dm+(1——)||um\|§’p—|—/g(x,um)umdac
Q p ’ Q
implies that
e+ [ 96 tn ()i (O = D@1+ [ Gl

b g 4
(1= Dl @, — 0+ )aCollum BT,

1
Now, since [|um(t)|1,p, < (2aC5)7=P = zp uniformly in ¢,m, we have that
[um )77 < (2aC,)~ L. Then taking 6 < (op)(p+20)~!, we conclude that

5 5 ,
(L= Dlum @I, = A+ aCollum @7,

5 o
= |(1- ];) -1+ ;)aCoHum(t)lh,pp l[um @)}, > 0.
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This implies that

lum @2, + /Q 92t (8) i (£) > —Hum 48 / G, u(t
and therefore (3.3) holds. O

Lemma 3.3 For anyt > 0,

1 1
En(t) > 5l (1 + 5 [un (O

Proof. In the case (a), the Lemma is a consequence of (3.1). In the case (b),
we use again the smallness of the approximate solutions.

1 1 aC, Y
En(t) = Sllup, (013 + Sl Wiy = —=lum(@)17,

1 1
= Slu@®lz+ %Hum(t)ll’ip = Q(llum @)1p)-

Since Q(||um (t)[[1,p) > 0, the result follows. O

Proof of Theorem 3.1: We first obtain uniform estimates for the approx-
imate energy (3.2). Fix an arbitrary ¢t > 0, we get from the approximate
problem (2.8) with f =0 and v = u/,(¢)

/ 1(=A) 5t (5)|2ds = B (0),

from where
Er, (1) + [[(=2) 2 up, (1)][5 = 0. (34)
Integrating (3.4) from ¢ to t + 1 and putting

DZ(t) = Ep(t) — Ep(t +1)
we have in view of (2.25)

t+1 o t+1
D2,(t) = / 1(=A)Suly ()3 ds > A¢ / l(s)|3ds.  (35)
t t

By applying the Mean Value Theorem in (3.5), there exist t1 € [¢,t+ i] and
to € [t+ 2,¢ + 1] such that

il () l2 < VAL 2 D) i =1,2. (3.6)
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Now, integrating the approximate equation with v = u,,(t) over [t1,ts], we
infer from Lemma 3.2 that

b [ () ds < (uy(t1), tm(t1)) — (i (£2), tm (£2)

+ [ tas - [

t1 t1

w[R

Uy (8), (=) Fup(s))ds.

Then from Lemma 3.3, Holder’s inequality and Sobolev embeddings, we
have in view of (3.5) and (3.6), there exist positive constants C; and Cy
such that

to 1
En(s)ds < C1D2 (t) + CoDy(t)EE (t).

t1
By the Mean Value Theorem, there exists t* € [t1,t2] such that

1

Ep(t*) < C1D2,(t) + Co Dy () EL(1).

The monotonicity of E,, implies that

1

Ep(t41) < C1D2,(t) + CoDp () EX(1).

Since E,,(t + 1) = Ep,(t) — D2,(t), we conclude that

En(t) < (C1+1)D2 (t) + Csz(t)E,i(t).

Using Young’s inequality, there exist positive constants C's and Cy4 such that

Epn(t) < CsD2 () + C1Di (1), (3.7)

If p = 2 then
En(t) < (Cs+ Ca) D, (1)

and since E,, is decreasing, then from Lemma 3.1 there exist positive con-
stants C' and 0 (independent of m) such that

E,(t) < Cexp(—6t) Vt>0. (3.8)

If p > 2, then relation (3.7) and the boundedness of D,, (t) show the existence
of C5 > 0 such that

_p_
En(t) < CsDi (1),
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and then

2(p=1) 2(p—1)

En" (t)<Cy * DZ(1).

Applying Lemma 3.1, with v = (p — 2)/p, there exists a constant C' > 0
(independent of m) such that

En(t) <C(1+t)72 Yt>0. (3.9)
Finally we pass to the limit (3.8) and (3.9) and the proof is complete in view
of Lemma 3.3. O
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