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Departamento de Matemática - Universidade Estadual de Maringá
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Abstract

We study the existence and asymptotic behaviour of the global
solutions of the nonlinear equation

utt − ∆pu + (−∆)αut + g(u) = f

where 0 < α ≤ 1 and g does not satisfy the sign condition g(u)u ≥ 0.
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1. Introduction

The study of global existence and asymptotic behaviour for initial-boundary
value problems involving nonlinear operators of the type

utt −
n
∑

i=1

{σi(uxi
)}xi

− ∆ut = f(t, x) in (0, T ) × Ω

goes back to Greenberg, MacCamy & Mizel [3], where they considered the
one-dimensional case with smooth data. Later, several papers have appeared
in that direction, and some of its important results can be found in, for
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example, Ang & Pham Ngoc Dinh [1], Biazutti [2], Nakao [8], Webb [10]
and Yamada [11]. In all of the above cited papers, the damping term −∆ut

played an essential role in order to obtain global solutions. Our objective is
to study this kind of equations under a weaker damping given by (−∆)αut

with 0 < α ≤ 1. This approach was early considered by Medeiros and
Milla Miranda [6] to Kirchhoff equations. We also consider the presence of
a forcing term g(x, u) that does not satisfy the sign condition g(x, u)u ≥ 0.
Our study is based on the pseudo Laplacian operator

−∆pu = −
n
∑

i=1

∂

∂xi

(

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p−2 ∂u

∂xi

)

which is used as a model for several monotone hemicontinuous operators.
Let Ω be a bounded domain in R

n with smooth boundary ∂Ω. We
consider the nonlinear initial-boundary value problem

(1.1)







utt − ∆pu + (−∆)αut + g(x, u) = f(t, x) in (0, T ) × Ω,
u = 0 on (0, T ) × ∂Ω,
u(0, x) = u0 and ut(0, x) = u1 in Ω,

where 0 < α ≤ 1 and p ≥ 2. We prove that, depending on the growth of
g, problem (1.1) has a global weak solution without assuming small initial
data. In addition, we show the exponential decay of solutions when p = 2
and algebraic decay when p > 2. The global solutions are constructed
by means of the Galerkin approximations and the asymptotic behaviour is
obtained by using a difference inequality due to M. Nakao [7]. Here we only
use standard notations. We often write u(t) instead u(t, x) and u′(t) instead
ut(t, x). The norm in Lp(Ω) is denoted by ‖ · ‖p and in W 1,p

0 (Ω) we use the
norm

‖u‖p
1,p =

n
∑

j=1

‖uxj
‖p

p.

For the reader’s convenience, we recall some of the basic properties of the
operators used here. The degenerate operator −∆p is bounded, monotone

and hemicontinuous from W 1,p
0 (Ω) to W−1,q(Ω), where p−1 + q−1 = 1. The

powers for the Laplacian operator is defined by

(−∆)αu =

∞
∑

j=1

λα
j (u, ϕj)ϕj ,

where 0 < λ1 < λ2 ≤ λ3 ≤ · · · and ϕ1, ϕ2, ϕ3, · · · are, respectively, the
sequence of the eigenvalues and eigenfunctions of −∆ in H 1

0 (Ω). Then

‖u‖D((−∆)α) = ‖(−∆)αu‖2 ∀u ∈ D((−∆)α)
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and D((−∆)α) ⊂ D((−∆)β) compactly if α > β ≥ 0. In particular, for
p ≥ 2 and 0 < α ≤ 1, W 1,p

0 (Ω) ↪→ D((−∆)α/2) ↪→ L2(Ω).

2. Existence of Global Solutions

Let g : Ω×R → R be a continuous function satisfying the growth condition

|g(x, u)| ≤ a|u|σ−1 + b ∀(x, u) ∈ Ω × R, (2.1)

where a, b are positive constants, 1 < σ < pn/(n−p) if n > p and 1 < σ < ∞
if n ≤ p.

Theorem 2.1 Let us assume condition (2.1) with σ < p. Then given u0 ∈
W 1,p

0 (Ω), u1 ∈ L2(Ω) and f ∈ L2(0, T ;L2(Ω)), there exists a function u :
(0, T ) × Ω → R such that

u ∈ L∞(0, T ;W 1,p
0 (Ω)), (2.2)

u′ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;D((−∆)
α
2 )), (2.3)

u(0) = u0 and u′(0) = u1 a.e. in Ω, (2.4)

utt − ∆pu + (−∆)αut + g(x, u) = f in L2(0, T ;W−1,q(Ω)), (2.5)

where p−1 + q−1 = 1.

Next we consider an existence result when σ ≥ p. In this case, the global
solution is obtained with small initial data. For each m ∈ N we put

γm =
1

2
‖u1m‖2

2 +
3

2p
‖u0m‖p

1,p +
aCσ

σ
‖u0m‖σ

1,p +
2( p
√

2bC1)
q

q

where Ck > 0 is the Sobolev constant for the inequality ‖u‖k ≤ Ck‖u‖1,p,

when W 1,p
0 (Ω) ↪→ Lk(Ω). We also define the polynomial Q by

Q(z) =
1

2p
zp − aCσ

σ
zσ,

which is increasing in [0, z0], where

z0 = (2aCσ)
−1

σ−p

is its unique local maximum. We will assume that

‖u0‖1,p < z0 (2.6)
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and

γ +
1

4λα
1

∫ T

0
‖f(t)‖2

2dt < Q(z0), (2.7)

where γ = limm→∞ γm.

Theorem 2.2 Suppose that condition (2.1) holds with σ > p. Suppose in

addition that inital data satisfy (2.6) and (2.7). Then there exists a function

u : (0, T ) × Ω → R satisfying (2.2)-(2.5).

Proof of Theorem 2.1: Let r be an integer for which H r
0(Ω) ↪→ W 1,p

0 (Ω)
is continuous. Then the eigenfunctions of −∆rwj = αjwj in Hr

0(Ω) yields
a “Galerkin” basis for both Hr

0(Ω) and L2(Ω). For each m ∈ N, let us put
Vm = Span{w1, w2, · · · , wm}. We search for a function

um(t) =

m
∑

j=1

kjm(t)wj

such that for any v ∈ Vm, um(t) satisfies the approximate equation
∫

Ω
{u′′

m(t) − ∆pum(t) + (−∆)αu′
m(t) + g(x, um(t)) − f(t, x)}v dx = 0 (2.8)

with the initial conditions

um(0) = u0m and u′
m(0) = u1m,

where u0m and u1m are chosen in Vm so that

u0m → u0 in W 1,p
0 (Ω) and u1m → u1 in L2(Ω). (2.9)

Putting v = wj , j = 1, · · · ,m, we observe that (2.8) is a system of ODEs
in the variable t and has a local solution um(t) in a interval [0, tm). In the
next step we obtain the a priori estimates for the solution um(t) so that it
can be extended to the whole interval [0, T ].

A Priori Estimates: We replace v by u′
m(t) in the approximate equation

(2.8) and after integration we have

1

2
‖u′

m(t)‖2
2 +

1

p
‖um(t)‖p

1,p +

∫ t

0
‖(−∆)

α
2 u′

m(s)‖2
2 ds +

∫

Ω
G(x, um(t))dx

≤
∫ t

0
‖f(s)‖2‖u′

m(s)‖2 ds +
1

2
‖u1m‖2

2 +
1

p
‖u0m‖p

1,p +

∫

Ω
G(x, u0)dx,
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where G(x, u) =
∫ u
0 g(x, s) ds. Now from growth condition (2.1) and the

Sobolev embedding, we have that

∫

Ω
|G(x, um(t))|dx ≤ a

σ
Cσ‖um(t)‖σ

1,p + bC1‖um(t)‖1,p. (2.10)

But since p > σ, there exists a constant C > 0 such that

∫

Ω
|G(x, um)|dx ≤ 1

2p
‖um(t)‖p

1,p + C,

and then we have

1

2
‖u′

m(t)‖2
2 +

1

2p
‖um(t)‖p

1,p +

∫ t

0
‖(−∆)

α
2 u′

m(s)‖2
2 ds

≤
∫ t

0
‖f(s)‖2‖u′

m(s)‖2 ds +
1

2
‖u1m‖2

2 +
3

2p
‖u0m‖p

1,p + 2C.

Using the convergence (2.9) and the Gronwall’s lemma, there exists a con-
stant C > 0 independent of t,m such that

‖u′
m(t)‖2

2 + ‖um(t)‖p
1,p +

∫ t

0
‖(−∆)

α
2 u′

m(s)‖2
2 ds ≤ C. (2.11)

With this estimate we can extend the approximate solutions um(t) to the
interval [0, T ] and we have that

(um) is bounded in L∞(0, T ;W 1,p
0 (Ω)), (2.12)

(u′
m) is bounded in L∞(0, T ;L2(Ω)), (2.13)

(u′
m) is bounded in L2(0, T ;D((−∆)

α
2 )), (2.14)

and
(−∆pum) is bounded in L∞(0, T ;W−1,q(Ω)). (2.15)

Now we are going to obtain an estimate for (u′′
m). Since our Galerkin basis

was taken in the Hilbert space Hr(Ω) ⊂ W 1,p
0 (Ω), we can use the standard

projection arguments as described in Lions [4]. Then from the approximate
equation and the estimates (2.12)-(2.15) we get

(u′′
m) is bounded in L2(0, T ;H−r(Ω)). (2.16)
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Passage to the Limit: From (2.12)-(2.14), going to a subsequence if neces-
sary, there exists u such that

um ⇀ u weakly star in L∞(0, T ;W 1,p
0 (Ω)), (2.17)

u′
m ⇀ u′ weakly star in L∞(0, T ;L2(Ω)), (2.18)

u′
m ⇀ u′ weakly in L2(0, T ;D((−∆)

α
2 ), (2.19)

and in view of (2.15) there exists χ such that

−∆pum ⇀ χ weakly star in L∞(0, T ;W−1,q(Ω)). (2.20)

By applying the Lions-Aubin compactness lemma we get from (2.12)-(2.13)

um → u strongly in L2(0, T ;L2(Ω)), (2.21)

and since D((−∆)
α
2 ) ↪→ L2(Ω) compactly, we get from (2.14) and (2.16)

u′
m → u′ strongly in L2(0, T ;L2(Ω)). (2.22)

Using the growth condition (2.1) and (2.21) we see that

∫ T

0

∫

Ω
|g(x, um(t, x))|

σ
σ−1 dxdt

is bounded and

g(x, um) → g(x, u) a.e. in (0, T ) × Ω.

Therefore from Lions [4] (Lemma 1.3) we infer that

g(x, um) ⇀ g(x, u) weakly in L
σ

σ−1 (0, T ;L
σ

σ−1 (Ω)). (2.23)

With these convergence we can pass to the limit in the approximate equation
and then

d

dt
(u′(t), v) + 〈χ(t), v〉 + ((−∆)αu′(t), v) + (g(x, u(t)), v) = (f(t), v) (2.24)

for all v ∈ W 1,p(Ω), in the sense of distributions. This easily implies that
(2.2)-(2.4) hold. Finally, since we have the strong convergence (2.22), we
can use a standard monotonicity argument as done in Biazutti [2] or Ma &
Soriano [5] to show that χ = −∆pu. This ends the proof. @A
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Proof of Theorem 2.2: We only show how to obtain the estimate (2.11).
The remainder of the proof follows as before. We apply an argument made
by L. Tartar [9]. From (2.10) we have

∫

Ω
|G(x, um)|dx ≤ aCσ

σ
‖um‖σ

1,p +
1

2p
‖um‖p

1,p +
( p
√

2bC1)
q

q

and therefore

1

2
‖u′

m(t)‖2
2 + Q(‖um(t)‖1,p) +

∫ t

0
‖(−∆)

α
2 u′

m(s)‖2
2 ds

≤ γm +

∫ t

0
‖f(s)‖2‖u′

m(s)‖2 ds.

Since
‖(−∆)

α
2 u′

m(s)‖2 ≥ λ
α
2
1 ‖u′

m(t)‖2, (2.25)

where λ1 is the first eigenvalue of −∆ in H1
0 (Ω), this implies that

1

2
‖u′

m(t)‖2
2 + Q(‖um(t)‖1,p) ≤ γm +

1

4λα
1

∫ T

0
‖f(t)‖2

2 dt. (2.26)

We claim that there exists an integer N such that

‖um(t)‖1,p < z0 ∀ t ∈ [0, tm) m > N (2.27)

Suppose the claim is proved. Then Q(‖um(t)‖1,p) ≥ 0 and from (2.7) and
(2.26), ‖u′

m(t)‖2 is bounded and consequently (2.11) follows.

Proof of the Claim: Suppose (2.27) false. Then for each m > N , there exists
t ∈ [0, tm) such that ‖um(t)‖1,p ≥ z0. We note that from (2.6) and (2.9)
there exists N0 such that

‖um(0)‖1,p < z0 ∀m > N0.

Then by continuity there exists a first t∗m ∈ (0, tm) such that

‖um(t∗m)‖1,p = z0, (2.28)

from where
Q(‖um(t)‖1,p) ≥ 0 ∀ t ∈ [0, t∗m].

Now from (2.7) and (2.26), there exist N > N0 and β ∈ (0, z0) such that

0 ≤ 1

2
‖u′

m(t)‖2
2 + Q(‖um(t)‖1,p) ≤ Q(β) ∀ t ∈ [0, t∗m] ∀m > N.
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Then the monotonicity of Q in [0, z0] implies that

0 ≤ ‖um(t)‖1,p ≤ β < z0 ∀t ∈ [0, t∗m],

and in particular, ‖um(t∗m)‖1,p < z0, which is a contradiction to (2.28). @A

Remarks: From the above proof we have the following immediate conclu-
sion: The smallness of initial data can be dropped if either condition (2.1)
holds with σ = p and coefficient a is sufficiently small, or σ > p and the sign
condition g(x, u)u ≥ 0 is satisfied. @A

3. Asymptotic Behaviour

Theorem 3.1 Let u be a solution of Problem (1.1) given by

(a) either Theorem 2.1 with the additional assumption: there exists ρ > 0
such that

g(x, u)u ≥ ρG(x, u) ≥ 0, (3.1)

(b) or Theorem 2.2.

Then there exists positive constants C and θ such that

‖u′(t)‖2
2 + ‖u(t)‖p

1,p ≤ C exp(−θt) if p = 2,

or

‖u′(t)‖2
2 + ‖u(t)‖p

1,p ≤ C(1 + t)
−p

p−2 if p > 2.

The proof of Theorem 3.1 is based on the following difference inequality of
M. Nakao [7].

Lemma 3.1 (Nakao) Let φ : R+ → R be a bounded nonnegative function

for which there exist constants β > 0 and γ ≥ 0 such that

sup
t≤s≤t+1

(φ(s))1+γ ≤ β(φ(t) − φ(t + 1)) ∀ t ≥ 0.

Then

(i) If γ = 0, there exist positive constants C and θ such that

φ(t) ≤ C exp(−θt) ∀ t ≥ 0.

(ii) If γ > 0, there exists a positive constant C such that

φ(t) ≤ C(1 + t)
−1
γ ∀ t ≥ 0.
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Let us define the approximate energy of the system (1.1) by

Em(t) =
1

2
‖u′

m(t)‖2
2 +

1

p
‖um(t)‖p

1,p +

∫

Ω
G(x, um(t))dx. (3.2)

Then the following two lemmas hold.

Lemma 3.2 There exists a constant k > 0 such that

kEm(t) ≤ ‖um(t)‖p
1,p +

∫

Ω
g(x, um(t))um(t)dx. (3.3)

Proof. In the case (a), condition (3.3) is a direct consequence of (3.1). In
the case (b) the result follows from (2.27). In fact, from assumption (2.1)
with b = 0 we have
∫

Ω
|G(x, um)|dx ≤ aCσ

σ
‖um‖σ

1,p and

∫

Ω
|g(x, um)um|dx ≤ aCσ‖um‖σ

1,p.

Then given δ > 0,

‖um‖p
1,p +

∫

Ω
g(x, um)umdx =

δ

p
‖um‖p

1,p + δ

∫

Ω
G(x, um)dx

−δ

∫

Ω
G(x, um)dx + (1 − δ

p
)‖um‖p

1,p +

∫

Ω
g(x, um)um dx

implies that

‖um(t)‖p
1,p +

∫

Ω
g(x, um(t))um(t)dx ≥ δ

p
‖um(t)‖p

1,p + δ

∫

Ω
G(x, um(t))dx

+(1 − δ

p
)‖um(t)‖p

1,p − (1 +
δ

σ
)aCσ‖um(t)‖σ

1,p.

Now, since ‖um(t)‖1,p ≤ (2aCσ)
−1

σ−p = z0 uniformly in t,m, we have that
‖um(t)‖σ−p

1,p ≤ (2aCσ)−1. Then taking δ ≤ (σp)(p+2σ)−1, we conclude that

(1 − δ

p
)‖um(t)‖p

1,p − (1 +
δ

σ
)aCσ‖um(t)‖σ

1,p

=

[

(1 − δ

p
) − (1 +

δ

σ
)aCσ‖um(t)‖σ−p

1,p

]

‖um(t)‖p
1,p ≥ 0.
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This implies that

‖um(t)‖p
1,p +

∫

Ω
g(x, um(t))um(t)dx ≥ δ

p
‖um(t)‖p

1,p + δ

∫

Ω
G(x, um(t))dx

and therefore (3.3) holds. @A

Lemma 3.3 For any t > 0,

Em(t) ≥ 1

2
‖u′

m(t)‖2
2 +

1

2p
‖um(t)‖p

1,p.

Proof. In the case (a), the Lemma is a consequence of (3.1). In the case (b),
we use again the smallness of the approximate solutions.

Em(t) ≥ 1

2
‖u′

m(t)‖2
2 +

1

p
‖um(t)‖p

1,p −
aCσ

σ
‖um(t)‖σ

1,p

=
1

2
‖u′

m(t)‖2
2 +

1

2p
‖um(t)‖p

1,p − Q(‖um(t)‖1,p).

Since Q(‖um(t)‖1,p) ≥ 0, the result follows. @A

Proof of Theorem 3.1: We first obtain uniform estimates for the approx-
imate energy (3.2). Fix an arbitrary t > 0, we get from the approximate
problem (2.8) with f = 0 and v = u′

m(t)

Em(t) +

∫ t

0
‖(−∆)

α
2 u′

m(s)‖2
2ds = Em(0),

from where
E′

m(t) + ‖(−∆)
α
2 u′

m(t)‖2
2 = 0. (3.4)

Integrating (3.4) from t to t + 1 and putting

D2
m(t) = Em(t) − Em(t + 1)

we have in view of (2.25)

D2
m(t) =

∫ t+1

t
‖(−∆)

α
2 u′

m(s)‖2
2 ds ≥ λα

1

∫ t+1

t
‖u′

m(s)‖2
2 ds. (3.5)

By applying the Mean Value Theorem in (3.5), there exist t1 ∈ [t, t+ 1
4 ] and

t2 ∈ [t + 3
4 , t + 1] such that

‖u′
m(ti)‖2 ≤

√
2λ

−α
2

1 Dm(t) i = 1, 2. (3.6)
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Now, integrating the approximate equation with v = um(t) over [t1, t2], we
infer from Lemma 3.2 that

k

∫ t2

t1

Em(s) ds ≤ (u′
m(t1), um(t1)) − (u′

m(t2), um(t2))

+

∫ t2

t1

‖u′
m(s)‖2

2 ds −
∫ t2

t1

((−∆)
α
2 u′

m(s), (−∆)
α
2 um(s))ds.

Then from Lemma 3.3, Hölder’s inequality and Sobolev embeddings, we
have in view of (3.5) and (3.6), there exist positive constants C1 and C2

such that
∫ t2

t1

Em(s)ds ≤ C1D
2
m(t) + C2Dm(t)E

1
p
m(t).

By the Mean Value Theorem, there exists t∗ ∈ [t1, t2] such that

Em(t∗) ≤ C1D
2
m(t) + C2Dm(t)E

1
p
m(t).

The monotonicity of Em implies that

Em(t + 1) ≤ C1D
2
m(t) + C2Dm(t)E

1
p
m(t).

Since Em(t + 1) = Em(t) − D2
m(t), we conclude that

Em(t) ≤ (C1 + 1)D2
m(t) + C2Dm(t)E

1
p
m(t).

Using Young’s inequality, there exist positive constants C3 and C4 such that

Em(t) ≤ C3D
2
m(t) + C4D

p

p−1
m (t). (3.7)

If p = 2 then
Em(t) ≤ (C3 + C4)D

2
m(t)

and since Em is decreasing, then from Lemma 3.1 there exist positive con-
stants C and θ (independent of m) such that

Em(t) ≤ C exp(−θt) ∀ t > 0. (3.8)

If p > 2, then relation (3.7) and the boundedness of Dm(t) show the existence
of C5 > 0 such that

Em(t) ≤ C5D
p

p−1
m (t),
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and then

E
2(p−1)

p
m (t) ≤ C

2(p−1)
p

5 D2
m(t).

Applying Lemma 3.1, with γ = (p − 2)/p, there exists a constant C > 0
(independent of m) such that

Em(t) ≤ C(1 + t)
−p

p−2 ∀ t ≥ 0. (3.9)

Finally we pass to the limit (3.8) and (3.9) and the proof is complete in view
of Lemma 3.3. @A
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