Indexing metadata

Vertices of the Least Concave Majorant of Brownian Motion with Parabolic Drift


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Vertices of the Least Concave Majorant of Brownian Motion with Parabolic Drift
 
2. Creator Author's name, affiliation, country Piet Groeneboom; Delft University of Technology; Netherlands
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Brownian motion, parabolic drift, number of vertices, concave majorant, Airy functions, jump processes, Grenander estimator
 
3. Subject Subject classification 60J65
 
4. Description Abstract

It was shown in Groeneboom (1983) that the least concave majorant of one-sided Brownian motion without drift can be characterized by a jump process with independent increments, which is the inverse of the process of slopes of the least concave majorant. This result can be used to prove the result in Sparre Andersen (1954) that the number of vertices of the smallest concave majorant of the empirical distribution function of a sample of size $n$ from the uniform distribution on $[0,1]$ is asymptotically normal, with an asymptotic expectation and variance which are both of order $\log(n)$. A similar (Markovian) inverse jump process was introduced in Groeneboom (1989), in an analysis of the least concave majorant of two-sided Brownian motion with a parabolic drift. This process is quite different from the process for one-sided Brownian motion without drift: the number of vertices in a (corresponding slopes) interval has an expectation proportional to the length of the interval and the variance of the number of vertices in such an interval is about half the size of the expectation, if the length of the interval tends to infinity. We prove an asymptotic normality result for the number of vertices in an increasing interval, which translates into a corresponding result for the least concave majorant of an empirical distribution function of a sample of size $n$, generated by a strictly concave distribution function. In this case the number of vertices is of order cube root $n$ and the variance is again about half the size of the asymptotic expectation. As a side result we obtain some interesting relations between the first moments of the number of vertices, the square of the location of the maximum of Brownian motion minus a parabola, the value of the maximum itself, the squared slope of the least concave majorant at zero, and the value of the least concave majorant at zero.

An erratum is available in EJP volume 18 paper 46.

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2011-11-15
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/959
 
10. Identifier Digital Object Identifier 10.1214/EJP.v16-959
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 16
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.