Indexing metadata

Upper large deviations for Branching Processes in Random Environment with heavy tails


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Upper large deviations for Branching Processes in Random Environment with heavy tails
 
2. Creator Author's name, affiliation, country Vincent Bansaye; Ecole Polytechnique, Palaiseau
 
2. Creator Author's name, affiliation, country Christian Böinghoff; Goethe-University Frankfurt/Main
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Branching processes, random environment, large deviations, random walks, heavy tails
 
3. Subject Subject classification 60J80; 60K37; 60J05; 92D25
 
4. Description Abstract Branching Processes in Random Environment (BPREs) $(Z_n:n\geq0)$ are the generalization of Galton-Watson processes where \lq in each generation' the reproduction law is picked randomly in an i.i.d. manner. The associated random walk of the environment has increments distributed like the logarithmic mean of the offspring distributions. This random walk plays a key role in the asymptotic behavior. In this paper, we study the upper large deviations of the BPRE $Z$ when the reproduction law may have heavy tails. More precisely, we obtain an expression for the limit of $-\log \mathbb{P}(Z_n\geq \exp(\theta n))/n$ when $n\rightarrow \infty$. It depends on the rate function of the associated random walk of the environment, the logarithmic cost of survival $\gamma:=-\lim_{n\rightarrow\infty} \log \mathbb{P}(Z_n>0)/n$ and the polynomial rate of decay $\beta$ of the tail distribution of $Z_1$. This rate function can be interpreted as the optimal way to reach a given "large" value. We then compute the rate function when the reproduction law does not have heavy tails. Our results generalize the results of B\"oinghoff $\&$ Kersting (2009) and Bansaye $\&$ Berestycki (2008) for upper large deviations. Finally, we derive the upper large deviations for the Galton-Watson processes with heavy tails.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) German Research Foundation (DFG) and ANR Manege
 
7. Date (YYYY-MM-DD) 2011-10-19
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/933
 
10. Identifier Digital Object Identifier 10.1214/EJP.v16-933
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 16
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.