Indexing metadata

Universal Behavior of Connectivity Properties in Fractal Percolation Models


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Universal Behavior of Connectivity Properties in Fractal Percolation Models
 
2. Creator Author's name, affiliation, country Erik I Broman; Chalmers University of Technology; Sweden
 
2. Creator Author's name, affiliation, country Federico Camia; Vrije Universiteit Amsterdam; Netherlands
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) random fractals, fractal percolation, continuum percolation, Mandelbrot percolation, phase transition, crossing probability, discontinuity, Brownian loop soup, Poisson Boolean Model
 
3. Subject Subject classification 60D05, 28A80, 60K35
 
4. Description Abstract Partially motivated by the desire to better understand the connectivity phase transition in fractal percolation, we introduce and study a class of continuum fractal percolation models in dimension $d\geq2$. These include a scale invariant version of the classical (Poisson) Boolean model of stochastic geometry and (for $d=2$) the Brownian loop soup introduced by Lawler and Werner. The models lead to random fractal sets whose connectivity properties depend on a parameter $\lambda$. In this paper we mainly study the transition between a phase where the random fractal sets are totally disconnected and a phase where they contain connected components larger than one point. In particular, we show that there are connected components larger than one point at the unique value of $\lambda$ that separates the two phases (called the critical point). We prove that such a behavior occurs also in Mandelbrot's fractal percolation in all dimensions $d\geq2$. Our results show that it is a generic feature, independent of the dimension or the precise definition of the model, and is essentially a consequence of scale invariance alone. Furthermore, for $d=2$ we prove that the presence of connected components larger than one point implies the presence of a unique, unbounded, connected component.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2010-09-19
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/805
 
10. Identifier Digital Object Identifier 10.1214/EJP.v15-805
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 15
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.