Indexing metadata

Convergence of the Critical Finite-Range Contact Process to Super-Brownian Motion Above the Upper Critical Dimension: The Higher-Point Functions


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Convergence of the Critical Finite-Range Contact Process to Super-Brownian Motion Above the Upper Critical Dimension: The Higher-Point Functions
 
2. Creator Author's name, affiliation, country Remco van der Hofstad; Eindhoven University of Technology; Netherlands
 
2. Creator Author's name, affiliation, country Akira Sakai; Hokkaido University; Japan
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) contact process, mean-field behavior, critical exponents, super-Brownian motion
 
3. Subject Subject classification 60j65
 
4. Description Abstract In this paper, we investigate the contact process higher-point functions which denote the probability that the infection started at the origin at time 0 spreads to an arbitrary number of other individuals at various later times. Together with the results of the two-point function in [16], on which our proofs crucially rely, we prove that the higher-point functions converge to the moment measures of the canonical measure of super-Brownian motion above the upper critical dimension 4. We also prove partial results for in dimension at most 4 in a local mean-field setting. The proof is based on the lace expansion for the time-discretized contact process, which is a version of oriented percolation. For ordinary oriented percolation, we thus reprove the results of [20]. The lace expansion coefficients are shown to obey bounds uniformly in the discretization parameter, which allows us to establish the scaling results also for the contact process We also show that the main term of the vertex factor, which is one of the non-universal constants in the scaling limit, is 1 for oriented percolation, and 2 for the contact process, while the main terms of the other non-universal constants are independent of the discretization parameter. The lace expansion we develop in this paper is adapted to both the higher-point functions and the survival probability. This unified approach makes it easier to relate the expansion coefficients derived in this paper and the expansion coefficients for the survival probability, which will be investigated in a future paper [18].
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2010-05-11
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/783
 
10. Identifier Digital Object Identifier 10.1214/EJP.v15-783
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 15
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.