Indexing metadata

Brownian Dynamics of Globules


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Brownian Dynamics of Globules
 
2. Creator Author's name, affiliation, country Myriam Fradon; Université Lille1; France
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Stochastic Differential Equation; hard core interaction; reversible measure; normal reflection; local time; Brownian globule
 
3. Subject Subject classification 60K35; 60J55; 60H10
 
4. Description Abstract We prove the existence and uniqueness of a strong solution of a stochastic differential equation with normal reflection representing the random motion of finitely many globules. Each globule is a sphere with time-dependent random radius and a center moving according to a diffusion process. The spheres are hard, hence non-intersecting, which induces in the equation a reflection term with a local (collision-)time. A smooth interaction is considered too and, in the particular case of a gradient system, the reversible measure of the dynamics is given. In the proofs, we analyze geometrical properties of the boundary of the set in which the process takes its values, in particular the so-called Uniform Exterior Sphere and Uniform Normal Cone properties. These techniques extend to other hard core models of objects with a time-dependent random characteristic: we present here an application to the random motion of a chain-like molecule.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2010-02-11
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/739
 
10. Identifier Digital Object Identifier 10.1214/EJP.v15-739
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 15
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.