Indexing metadata

Occupation times of branching systems with initial inhomogeneous Poisson states and related superprocesses


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Occupation times of branching systems with initial inhomogeneous Poisson states and related superprocesses
 
2. Creator Author's name, affiliation, country Tomasz Bojdecki; Institute of Mathematics, University of Warsaw
 
2. Creator Author's name, affiliation, country Luis G. Gorostiza; Centro de Investigacion y de Estudios Avanzados, Mexico
 
2. Creator Author's name, affiliation, country Anna Talarczyk; Institute of Mathematics, University of Warsaw
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Branching particle system; superprocess; occupation time fluctuation; limit theorem; stable process; long-range dependence
 
3. Subject Subject classification 60F17; 60J80; 60G18; 60G52
 
4. Description Abstract The $(d,\alpha,\beta,\gamma)$-branching particle system consists of particles moving in $\mathbb{R}^d$ according to a symmetric $\alpha$-stable L\'evy process $(0<\alpha\leq 2)$, splitting with a critical $(1+\beta)$-branching law $(0<\beta\leq 1)$, and starting from an inhomogeneous Poisson random measure with intensity measure $\mu_\gamma(dx)=dx/(1+|x|^\gamma), \gamma\geq 0$. By means of time rescaling $T$ and Poisson intensity measure $H_T\mu_\gamma$, occupation time fluctuation limits for the system as $T\to\infty$ have been obtained in two special cases: Lebesgue measure ($\gamma=0$, the homogeneous case), and finite measures $(\gamma > d)$. In some cases $H_T\equiv 1$ and in others $H_T\to\infty$ as $T\to\infty$ (high density systems). The limit processes are quite different for Lebesgue and for finite measures. Therefore the question arises of what kinds of limits can be obtained for Poisson intensity measures that are intermediate between Lebesgue measure and finite measures. In this paper the measures $\mu_\gamma, \gamma\in (0,d]$, are used for investigating this question. Occupation time fluctuation limits are obtained which interpolate in some way between the two previous extreme cases. The limit processes depend on different arrangements of the parameters $d,\alpha,\beta,\gamma$. There are two thresholds for the dimension $d$. The first one, $d=\alpha/\beta+\gamma$, determines the need for high density or not in order to obtain non-trivial limits, and its relation with a.s. local extinction of the system is discussed. The second one, $d=[\alpha(2+\beta)-\gamma\vee \alpha]/\beta$\ (if $\gamma < d$), interpolates between the two extreme cases, and it is a critical dimension which separates different qualitative behaviors of the limit processes, in particular long-range dependence in ``low'' dimensions, and independent increments in ``high'' dimensions. In low dimensions the temporal part of the limit process is a new self-similar stable process which has two different long-range dependence regimes depending on relationships among the parameters. Related results for the corresponding $(d,\alpha,\beta,\gamma)$-superprocess are also given.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) CONYACyT (Mexico); MEiN (Poland)
 
7. Date (YYYY-MM-DD) 2009-06-15
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/665
 
10. Identifier Digital Object Identifier 10.1214/EJP.v14-665
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 14
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.