Indexing metadata

Limsup Random Fractals


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Limsup Random Fractals
 
2. Creator Author's name, affiliation, country Davar Khoshnevisan; University of Utah
 
2. Creator Author's name, affiliation, country Yuval Peres; University of California, Berkeley
 
2. Creator Author's name, affiliation, country Yimin Xiao; University of Utah
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Limsup random fractal, packing dimension, Hausdorffdimension, Brownian motion, fast point.
 
3. Subject Subject classification 60G17, 69J65, 28A80.
 
4. Description Abstract Orey and Taylor (1974) introduced sets of ``fast points'' where Brownian increments are exceptionally large, ${\rm F}(\lambda):=\{ t\in[0,1]: \limsup_{h\to 0}{ | X(t+h)-X(t)| / \sqrt{ 2h|\log h|}} \ge \lambda\}$. They proved that for $\lambda \in (0,1]$, the Hausdorff dimension of ${\rm F}(\lambda)$ is $1-\lambda^2$ a.s. We prove that for any analytic set $E \subset [0,1]$, the supremum of the $\lambda$ such that $E$ intersects ${\rm F}(\lambda)$ a.s. equals $\sqrt{\text{dim}_p E }$, where $\text{dim}_p E$ is the packing dimension of $E$. We derive this from a general result that applies to many other random fractals defined by limsup operations. This result also yields extensions of certain ``fractal functional limit laws'' due to Deheuvels and Mason (1994). In particular, we prove that for any absolutely continuous function $f$ such that $f(0)=0$ and the energy $\int_0^1 |f'|^2 \, dt $ is lower than the packing dimension of $E$, there a.s. exists some $t \in E$ so that $f$ can be uniformly approximated in $[0,1]$ by normalized Brownian increments $s \mapsto [X(t+sh)-X(t)] / \sqrt{ 2h|\log h|}$; such uniform approximation is a.s. impossible if the energy of $f$ is higher than the packing dimension of $E$.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2000-02-09
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/60
 
10. Identifier Digital Object Identifier 10.1214/EJP.v5-60
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 5
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.