Indexing metadata

Glauber dynamics on nonamenable graphs: boundary conditions and mixing time


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Glauber dynamics on nonamenable graphs: boundary conditions and mixing time
 
2. Creator Author's name, affiliation, country Alessandra Bianchi; Weierstrass Institute for Applied Analysis and Stochastics (WIAS)
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Glauber dynamics; nonamenable graphs; spectral gap; mixing time
 
3. Subject Subject classification 82C20; 60K35; 82B20; 82C80
 
4. Description Abstract We study the stochastic Ising model on finite graphs with n vertices and bounded degree and analyze the effect of boundary conditions on the mixing time. We show that for all low enough temperatures, the spectral gap of the dynamics with (+)-boundary condition on a class of nonamenable graphs, is strictly positive uniformly in n. This implies that the mixing time grows at most linearly in n. The class of graphs we consider includes hyperbolic graphs with sufficiently high degree, where the best upper bound on the mixing time of the free boundary dynamics is polynomial in n, with exponent growing with the inverse temperature. In addition, we construct a graph in this class, for which the mixing time in the free boundary case is exponentially large in n. This provides a first example where the mixing time jumps from exponential to linear in n while passing from free to (+)-boundary condition. These results extend the analysis of Martinelli, Sinclair and Weitz to a wider class of nonamenable graphs.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2008-11-11
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/574
 
10. Identifier Digital Object Identifier 10.1214/EJP.v13-574
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 13
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.