Indexing metadata

Smoothness of the law of some one-dimensional jumping S.D.E.s with non-constant rate of jump


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Smoothness of the law of some one-dimensional jumping S.D.E.s with non-constant rate of jump
 
2. Creator Author's name, affiliation, country Nicolas Fournier; Université Paris Est
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Stochastic differential equations, Jump processes, Regularity of the density
 
3. Subject Subject classification 60H10, 60J75.
 
4. Description Abstract We consider a one-dimensional jumping Markov process, solving a Poisson-driven stochastic differential equation. We prove that the law of this process admits a smooth density for all positive times, under some regularity and non-degeneracy assumptions on the coefficients of the S.D.E. To our knowledge, our result is the first one including the important case of a non-constant rate of jump. The main difficulty is that in such a case, the process is not smooth as a function of its initial condition. This seems to make impossible the use of Malliavin calculus techniques. To overcome this problem, we introduce a new method, in which the propagation of the smoothness of the density is obtained by analytic arguments.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2008-01-30
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/480
 
10. Identifier Digital Object Identifier 10.1214/EJP.v13-480
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 13
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.