Indexing metadata

Continuity of the percolation threshold in randomly grown graphs.


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Continuity of the percolation threshold in randomly grown graphs.
 
2. Creator Author's name, affiliation, country Tatyana S. Turova; Lund University, Sweden
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Dynamic random graphs; phase transition; branching processes
 
3. Subject Subject classification 05C80; 60J80; 82C20
 
4. Description Abstract We consider various models of randomly grown graphs. In these models the vertices and the edges accumulate within time according to certain rules. We study a phase transition in these models along a parameter which refers to the mean life-time of an edge. Although deleting old edges in the uniformly grown graph changes abruptly the properties of the model, we show that some of the macro-characteristics of the graph vary continuously. In particular, our results yield a lower bound for the size of the largest connected component of the uniformly grown graph.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2007-08-09
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/436
 
10. Identifier Digital Object Identifier 10.1214/EJP.v12-436
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 12
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.