Extending the Martingale Measure Stochastic Integral With Applications to Spatially Homogeneous S.P.D.E.'s
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Extending the Martingale Measure Stochastic Integral With Applications to Spatially Homogeneous S.P.D.E.'s |
2. | Creator | Author's name, affiliation, country | Robert C. Dalang; Ecole Polytechnique Fédérale |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | stochastic wave equation, stochastic heat equation,Gaussian noise, process solution. |
3. | Subject | Subject classification | Primary 60H15; Secondary 60H05, 35R60, 35D10. |
4. | Description | Abstract | We extend the definition of Walsh's martingale measure stochastic integral so as to be able to solve stochastic partial differential equations whose Green's function is not a function but a Schwartz distribution. This is the case for the wave equation in dimensions greater than two. Even when the integrand is a distribution, the value of our stochastic integral process is a real-valued martingale. We use this extended integral to recover necessary and sufficient conditions under which the linear wave equation driven by spatially homogeneous Gaussian noise has a process solution, and this in any spatial dimension. Under this condition, the non-linear three dimensional wave equation has a global solution. The same methods apply to the damped wave equation, to the heat equation and to various parabolic equations. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 1999-03-24 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/43 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v4-43 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 4 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|