Indexing metadata

Quasi Stationary Distributions and Fleming-Viot Processes in Countable Spaces


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Quasi Stationary Distributions and Fleming-Viot Processes in Countable Spaces
 
2. Creator Author's name, affiliation, country Pablo A. Ferrari; Universidade de Sao Paulo
 
2. Creator Author's name, affiliation, country Nevena Maric; Syracuse University
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Quasi stationary distributions; Fleming-Viot process
 
3. Subject Subject classification 60F ; 60K35
 
4. Description Abstract

We consider an irreducible pure jump Markov process with rates $Q=(q(x,y))$ on $\Lambda\cup\{0\}$ with $\Lambda$ countable and $0$ an absorbing state. A {\em quasi stationary distribution \rm} (QSD) is a probability measure $\nu$ on $\Lambda$ that satisfies: starting with $\nu$, the conditional distribution at time $t$, given that at time $t$ the process has not been absorbed, is still $\nu$. That is, $\nu(x) = \nu P_t(x)/(\sum_{y\in\Lambda}\nu P_t(y))$, with $P_t$ the transition probabilities for the process with rates $Q$.

A Fleming-Viot (FV) process is a system of $N$ particles moving in $\Lambda$. Each particle moves independently with rates $Q$ until it hits the absorbing state $0$; but then instantaneously chooses one of the $N-1$ particles remaining in $\Lambda$ and jumps to its position. Between absorptions each particle moves with rates $Q$ independently.

Under the condition $\alpha:=\sum_{x\in\Lambda}\inf Q(\cdot,x) > \sup Q(\cdot,0):=C$ we prove existence of QSD for $Q$; uniqueness has been proven by Jacka and Roberts. When $\alpha>0$ the FV process is ergodic for each $N$. Under $\alpha>C$ the mean normalized densities of the FV unique stationary measure converge to the QSD of $Q$, as $N \to \infty$; in this limit the variances vanish.

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) FAPESP; CNPq; IM-AGIMB
 
7. Date (YYYY-MM-DD) 2007-05-28
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/415
 
10. Identifier Digital Object Identifier 10.1214/EJP.v12-415
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 12
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.