Indexing metadata

Sampling 3-colourings of regular bipartite graphs


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Sampling 3-colourings of regular bipartite graphs
 
2. Creator Author's name, affiliation, country David J Galvin; University of Pennsylvania
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Mixing time, 3-colouring, Potts model, conductance, Glauber dynamics, discrete hypercube
 
3. Subject Subject classification 05C15, 82B20
 
4. Description Abstract We show that if $G=(V,E)$ is a regular bipartite graph for which the expansion of subsets of a single parity of $V$ is reasonably good and which satisfies a certain local condition (that the union of the neighbourhoods of adjacent vertices does not contain too many pairwise non-adjacent vertices), and if $M$ is a Markov chain on the set of proper 3-colourings of $G$ which updates the colour of at most $c|V|$ vertices at each step and whose stationary distribution is uniform, then for $c < .22$ and $d$ sufficiently large the convergence to stationarity of $M$ is (essentially) exponential in $|V|$. In particular, if $G$ is the $d$-dimensional hypercube $Q_d$ (the graph on vertex set $\{0,1\}^d$ in which two strings are adjacent if they differ on exactly one coordinate) then the convergence to stationarity of the well-known Glauber (single-site update) dynamics is exponentially slow in $2^d/(\sqrt{d} \log d )$. A combinatorial corollary of our main result is that in a uniform 3-colouring of $Q_d$ there is an exponentially small probability (in $2^d$) that there is a colour $i$ such the proportion of vertices of the even subcube coloured $i$ differs from the proportion of the odd subcube coloured $i$ by at most .22. Our proof combines a conductance argument with combinatorial enumeration methods.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) NSF (grant DMS-0111298)
 
7. Date (YYYY-MM-DD) 2007-04-18
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/403
 
10. Identifier Digital Object Identifier 10.1214/EJP.v12-403
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 12
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.