Indexing metadata

On the range of subordinators


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document On the range of subordinators
 
2. Creator Author's name, affiliation, country Mladen Svetoslavov Savov; The University of Reading; United Kingdom
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Subordinator, Box-dimension ,Potential Measure
 
3. Subject Subject classification 60J75; 60K99
 
4. Description Abstract In this note we look into detail into the box-counting dimension of subordinators. Given that X is a non-decreasing Levy process which is not Compound Poisson process we show that in the limit, a.s., the minimum number of boxes of size $a$ that cover the range of $(X_s)_{s\leq t}$ is a.s. of order $t/U(a)$, where U is the potential function of X. This is a more rened result than the lower and upper index of the box-counting dimension computed by Jean Bertoin in his 1999 book, which deals with the asymptotic of the number of boxes at logarithmic scale.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2014-12-11
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/3629
 
10. Identifier Digital Object Identifier 10.1214/ECP.v19-3629
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 19
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.