Some limit results for Markov chains indexed by trees
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Some limit results for Markov chains indexed by trees |
2. | Creator | Author's name, affiliation, country | Peter Czuppon; University of Freiburg; Germany |
2. | Creator | Author's name, affiliation, country | Peter Pfaffelhuber; University of Freiburg; Germany |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Tree-indexed Markov chain, weak convergence, tightness, random measure, empirical measure |
3. | Subject | Subject classification | 60F15; 60F05 |
4. | Description | Abstract | We consider a sequence of Markov chains $(\mathcal X^n)_{n=1,2,...}$ with $\mathcal X^n = (X^n_\sigma)_{\sigma\in\mathcal T}$, indexed by the full binary tree $\mathcal T = \mathcal T_0 \cup \mathcal T_1 \cup ...$, where $\mathcal T_k$ is the $k$th generation of $\mathcal T$. In addition, let $(\Sigma_k)_{k=0,1,2,...}$ be a random walk on $\mathcal T$ with $\Sigma_k \in \mathcal T_k$ and $\widetilde{\mathcal R}^n = (\widetilde R_t^n)_{t\geq 0}$ with $\widetilde R_t^n := X_{\Sigma_{[tn]}}$, arising by observing the Markov chain $\mathcal X^n$ along the random walk. We present a law of large numbers concerning the empirical measure process $\widetilde{\mathcal Z}^n = (\widetilde Z_t^n)_{t\geq 0}$ where $\widetilde{Z}_t^n = \sum_{\sigma\in\mathcal T_{[tn]}} \delta_{X_\sigma^n}$ as $n\to\infty$. Precisely, we show that if $\widetilde{\mathcal R}^n \Rightarrow{n\to\infty} \mathcal R$ for some Feller process $\mathcal R = (R_t)_{t\geq 0}$ with deterministic initial condition, then $\widetilde{\mathcal Z}^n \Rightarrow{n\to\infty} \mathcal Z$ with $Z_t = \delta_{\mathcal L(R_t)}$. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | DFG |
7. | Date | (YYYY-MM-DD) | 2014-11-11 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/3601 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v19-3601 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 19 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|