Indexing metadata

The harmonic measure of balls in critical Galton-Watson trees with infinite variance offspring distribution


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document The harmonic measure of balls in critical Galton-Watson trees with infinite variance offspring distribution
 
2. Creator Author's name, affiliation, country Shen Lin; Université Paris-Sud XI; France
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) critical Galton-Watson tree; harmonic measure; Hausdorff dimension; invariant measure; simple random walk and Brownian motion on trees
 
3. Subject Subject classification 60J80; 60G50; 60K37
 
4. Description Abstract We study properties of the harmonic measure of balls in large critical Galton-Watson trees whose offspring distribution is in the domain of attraction of a stable distribution with index $\alpha\in (1,2]$. Here the harmonic measure refers to the hitting distribution of height $n$ by simple random walk on the critical Galton-Watson tree conditioned on non-extinction at generation $n$. For a ball of radius $n$ centered at the root, we prove that, although the size of the boundary is roughly of order $n^{\frac{1}{\alpha-1}}$, most of the harmonic measure is supported on a boundary subset of size approximately equal to $n^{\beta_{\alpha}}$, where the constant $\beta_{\alpha}\in (0,\frac{1}{\alpha-1})$ depends only on the index $\alpha$. Using an explicit expression of $\beta_{\alpha}$, we are able to show the uniform boundedness of $(\beta_{\alpha}, 1<\alpha\leq 2)$. These are generalizations of results in a recent paper of Curien and Le Gall.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2014-10-20
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/3498
 
10. Identifier Digital Object Identifier 10.1214/EJP.v19-3498
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 19
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.