Indexing metadata

Disjoint crossings, positive speed and deviation estimates for first passage percolation


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Disjoint crossings, positive speed and deviation estimates for first passage percolation
 
2. Creator Author's name, affiliation, country Ghurumuruhan Ganesan; École Polytechnique Fédérale de Lausanne; Switzerland
 
3. Subject Discipline(s)
 
3. Subject Keyword(s)
 
4. Description Abstract Consider bond percolation on the square lattice \(\mathbb{Z}^2\) where each edge is independently open with probability \(p.\) For some positive constants \(p_0 \in (0,1), \epsilon_1\) and \(\epsilon_2,\) the following holds: if \(p > p_0,\) then with probability at least \(1-\frac{\epsilon_1}{n^{4}}\) there are at least \(\frac{\epsilon_2 n}{\log{n}}\) disjoint open left-right crossings in \(B_n := [0,n]^2\) each having length at most \(2n,\) for all \(n \geq 2.\) Using the proof of the above, we obtain positive speed for first passage percolation with independent and identically distributed edge passage times \(\{t(e_i)\}_i\) satisfying \(\mathbb{E}\left(\log{t(e_1)}\right)^+<\infty;\) namely, \(\limsup_n \frac{T_{pl}(0,n)}{n} \leq Q\) a.s. for some  constant \(Q < \infty,\) where \(T_{pl}(0,n)\) denotes the minimum passage time from the point \((0,0)\) to the line \(x=n\) taken over all paths contained in \(B_n.\) Finally, we also obtain deviation corresponding estimates for nonidentical passage times satisfying \(\inf_i\mathbb{P}(t(e_i) = 0) > \frac{1}{2}.\)
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2014-08-11
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/3490
 
10. Identifier Digital Object Identifier 10.1214/ECP.v19-3490
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 19
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.