Markov Processes with Identical Bridges
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Markov Processes with Identical Bridges |
2. | Creator | Author's name, affiliation, country | P. J. Fitzsimmons; University of California, San Diego |
3. | Subject | Discipline(s) | Mathematics |
3. | Subject | Keyword(s) | Bridge law, eigenfunction, transition density. |
3. | Subject | Subject classification | Primary: 60J25; secondary 60J35. |
4. | Description | Abstract | Let $X$ and $Y$ be time-homogeneous Markov processes with common state space $E$, and assume that the transition kernels of $X$ and $Y$ admit densities with respect to suitable reference measures. We show that if there is a time $t>0$ such that, for each $x\in E$, the conditional distribution of $(X_s)_{0\le s\le t}$, given $X_0=x=X_t$, coincides with the conditional distribution of $(Y_s)_{0\le s\le t}$, given $Y_0=x=Y_t$, then the infinitesimal generators of $X$ and $Y$ are related by $L^Yf=\psi^{-1}L^X(\psi f)-\lambda f$, where $\psi$ is an eigenfunction of $L^X$ with eigenvalue $\lambda\in{\bf R}$. Under an additional continuity hypothesis, the same conclusion obtains assuming merely that $X$ and $Y$ share a "bridge" law for one triple $(x,t,y)$. Our work extends and clarifies a recent result of I. Benjamini and S. Lee. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 1998-07-05 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/34 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v3-34 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 3 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|