Indexing metadata

Laws of the iterated logarithm for α-time Brownian motion


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Laws of the iterated logarithm for α-time Brownian motion
 
2. Creator Author's name, affiliation, country Erkan Nane; Purdue university
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Brownian motion, symmetric $alpha$-stable process, $alpha$-time Brownian motion, local time, Chung's law, Kesten's law.
 
3. Subject Subject classification 60J65, 60K99
 
4. Description Abstract We introduce a class of iterated processes called $\alpha$-time Brownian motion for $0<\alpha \leq 2$. These are obtained by taking Brownian motion and replacing the time parameter with a symmetric $\alpha$-stable process. We prove a Chung-type law of the iterated logarithm (LIL) for these processes which is a generalization of LIL proved in cite{hu} for iterated Brownian motion. When $\alpha =1$ it takes the following form $$ \liminf_{T\to\infty}\ T^{-1/2}(\log\log T) \sup_{0\leq t\leq T}|Z_{t}|=\pi^{2}\sqrt{\lambda_{1}} \quad a.s. $$ where $\lambda_{1}$ is the first eigenvalue for the Cauchy process in the interval $[-1,1].$ We also define the local time $L^{*}(x,t)$ and range $R^{*}(t)=|{x: Z(s)=x \text{ for some } s\leq t}|$ for these processes for $1<\alpha <2$. We prove that there are universal constants $c_{R},c_{L}\in (0,\infty) $ such that $$ \limsup_{t\to\infty}\frac{R^{*}(t)}{(t/\log \log t)^{1/2\alpha}\log \log t}= c_{R} \quad a.s. $$ $$ \liminf_{t\to\infty} \frac{\sup_{x\in {R}}L^{*}(x,t)}{(t/\log \log t)^{1-1/2\alpha}}= c_{L} \quad a.s. $$
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2006-06-19
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/327
 
10. Identifier Digital Object Identifier 10.1214/EJP.v11-327
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 11
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.