Indexing metadata

Nonmonotonic Coexistence Regions for the Two-Type Richardson Model on Graphs


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Nonmonotonic Coexistence Regions for the Two-Type Richardson Model on Graphs
 
2. Creator Author's name, affiliation, country Maria Deijfen; Stockholm University, Sweden
 
2. Creator Author's name, affiliation, country Olle Haggstrom; Chalmers University of Technology, Sweden
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Competing growth; graphs; coexistence
 
3. Subject Subject classification 60K35;82B43
 
4. Description Abstract In the two-type Richardson model on a graph $G=(V,E)$, each vertex is at a given time in state $0$, $1$ or $2$. A $0$ flips to a $1$ (resp.\ $2$) at rate $\lambda_1$ ($\lambda_2$) times the number of neighboring $1$'s ($2$'s), while $1$'s and $2$'s never flip. When $G$ is infinite, the main question is whether, starting from a single $1$ and a single $2$, with positive probability we will see both types of infection reach infinitely many sites. This has previously been studied on the $d$-dimensional cubic lattice $Z^d$, $d\geq 2$, where the conjecture (on which a good deal of progress has been made) is that such coexistence has positive probability if and only if $\lambda_1=\lambda_2$. In the present paper examples are given of other graphs where the set of points in the parameter space which admit such coexistence has a more surprising form. In particular, there exist graphs exhibiting coexistence at some value of $\frac{\lambda_1}{\lambda_2} \neq 1$ and non-coexistence when this ratio is brought closer to $1$.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2006-05-08
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/321
 
10. Identifier Digital Object Identifier 10.1214/EJP.v11-321
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 11
 
12. Language English=en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.