Euclidean partitions optimizing noise stability
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Euclidean partitions optimizing noise stability |
2. | Creator | Author's name, affiliation, country | Steven Heilman; Courant Institute NYU; United States |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Standard simplex, plurality, optimization, MAX-k-CUT, Unique Games Conjecture |
3. | Subject | Subject classification | 68Q25 |
4. | Description | Abstract | The Standard Simplex Conjecture of Isaksson and Mossel asks for the partition $\{A_{i}\}_{i=1}^{k}$ of $\mathbb{R}^{n}$ into $k\leq n+1$ pieces of equal Gaussian measure of optimal noise stability. That is, for $\rho>0$, we maximize$$\sum_{i=1}^{k}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}1_{A_{i}}(x)1_{A_{i}}(x\rho+y\sqrt{1-\rho^{2}})e^{-(x_{1}^{2}+\cdots+x_{n}^{2})/2}e^{-(y_{1}^{2}+\cdots+y_{n}^{2})/2}dxdy.$$Isaksson and Mossel guessed the best partition for this problem and proved some applications of their conjecture. For example, the Standard Simplex Conjecture implies the Plurality is Stablest Conjecture. For $k=3,n\geq2$ and $0<\rho<\rho_{0}(k,n)$, we prove the Standard Simplex Conjecture. The full conjecture has applications to theoretical computer science and to geometric multi-bubble problems (after Isaksson and Mossel). |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | NSF |
7. | Date | (YYYY-MM-DD) | 2014-08-15 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/3083 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v19-3083 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 19 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|