Largest eigenvalues and eigenvectors of band or sparse random matrices
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Largest eigenvalues and eigenvectors of band or sparse random matrices |
2. | Creator | Author's name, affiliation, country | Florent Benaych-Georges; Université Paris Descartes; France |
2. | Creator | Author's name, affiliation, country | Sandrine Péché; Université Paris Diderot |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | random matrices ; band matrices ; largest eigenvalues ; localization |
3. | Subject | Subject classification | 15A52; 60F05 |
4. | Description | Abstract | In this text, we consider an $N$ by $N$ random matrix $X$ such that all but $o(N)$ rows of $X$ have $W$ non identically zero entries, the other rows having less than $W$ entries (such as, for example, standard or cyclic band matrices). We always suppose that $1 \ll W \ll N$. We first prove that if the entries are independent, centered, have variance one, satisfy a certain tail upper-bound condition and $W \gg (\log N)^{6(1+\alpha)}$, where $\alpha$ is a positive parameter depending on the distribution of the entries, then the largest eigenvalue of $X/\sqrt{W}$ converges to the upper bound of its limit spectral distribution, that is $2$, as for Wigner matrices. This extends some previous results by Khorunzhiy and Sodin where less hypotheses were made on $W$, but more hypotheses were made about the law of the entries and the structure of the matrix. Then, under the same hypotheses, we prove a delocalization result for the eigenvectors of $X$, precisely that most of them cannot be essentially localized on less than $W/\log(N)$ entries. This lower bound on the localization length has to be compared to the recent result by Steinerberger, which states that the localization length in the edge is $\ll W^{7/5}$ or there is strong interaction between two eigenvectors in an interval oflength $W^{7/5}$. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2014-01-30 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/3027 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v19-3027 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 19 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|