Optimization of joint $p$-variations of Brownian semimartingales
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Optimization of joint $p$-variations of Brownian semimartingales |
2. | Creator | Author's name, affiliation, country | Emmanuel Gobet; École Polytechnique; France |
2. | Creator | Author's name, affiliation, country | Nicolas Landon; École Polytechnique; France |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | $p$-variation; almost-sure convergence; optimal stopping times |
3. | Subject | Subject classification | 60F15; 60G17; 60G40 |
4. | Description | Abstract | We study the optimization of the joint $(p^Y,p^Z)$-variations of two continuous semimartingales $(Y,Z)$ driven by the same Itô process $X$. The $p$-variations are defined on random grids made of finitely many stopping times. We establish an explicit asymptotic lower bound for our criterion, valid in rather great generality on the grids, and we exhibit minimizing sequences of hitting time form. The asymptotics is such that the spatial increments of $X$ and the number of grid points are suitably converging to 0 and $+\infty$ respectively. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2014-06-15 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/2975 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v19-2975 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 19 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|