A q-weighted version of the Robinson-Schensted algorithm
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | A q-weighted version of the Robinson-Schensted algorithm |
2. | Creator | Author's name, affiliation, country | Neil O'Connell; University of Warwick |
2. | Creator | Author's name, affiliation, country | Yuchen Pei; University of Warwick |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | q-Whittaker functions; Macdonald polynomials; |
3. | Subject | Subject classification | Primary 05E05, Secondary 15A52; 82C22 |
4. | Description | Abstract | We introduce a q-weighted version of the Robinson-Schensted (column insertion) algorithm which is closely connected to q Whittaker functions (or Macdonald polynomials with t=0) and reduces to the usual Robinson-Schensted algorithm when q=0. The q-insertion algorithm is `randomised', or `quantum', in the sense that when inserting a positive integer into a tableau, the output is a distribution of weights on a particular set of tableaux which includes the output which would have been obtained via the usual column insertion algorithm. There is also a notion of recording tableau in this setting. We show that the distribution of weights of the pair of tableaux obtained when one applies the q-insertion algorithm to a random word or permutation takes a particularly simple form and is closely related to q-Whittaker functions. In the case $0\le q<1$, the q-insertion algorithm applied to a random word also provides a new framework for solving the q-TASEP interacting particle system introduced (in the language of q-bosons) by Sasamoto and Wadati (1998) and yields formulas which are equivalent to some of those recently obtained by Borodin and Corwin (2011) via a stochastic evolution on discrete Gelfand-Tsetlin patterns (or semistandard tableaux) which is coupled to the q-TASEP. We show that the sequence of P-tableaux obtained when one applies the q-insertion algorithm to a random word defines another, quite different, evolution on semistandard tableaux which is also coupled to the q-TASEP. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | EPSRC |
7. | Date | (YYYY-MM-DD) | 2013-10-29 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/2930 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v18-2930 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 18 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|