Indexing metadata

The small noise limit of order-based diffusion processes


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document The small noise limit of order-based diffusion processes
 
2. Creator Author's name, affiliation, country Benjamin Jourdain; Université Paris-Est ENPC; France
 
2. Creator Author's name, affiliation, country Julien Reygner; Sorbonne Universités UPMC & Université Paris-Est ENPC; France
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Order-based diffusion process; small noise; Peano phenomenon; sticky particle dynamics; Lyapunov functional
 
3. Subject Subject classification 60H10; 60H30
 
4. Description Abstract In this article, we introduce and study order-based diffusion processes. They are the solutions to multidimensional stochastic differential equations with constant diffusion matrix, proportional to the identity, and drift coefficient depending only on the ordering of the coordinates of the process. These processes describe the evolution of a system of Brownian particles moving on the real line with piecewise constant drifts, and are the natural generalization of the rank-based diffusion processes introduced in stochastic portfolio theory or in the probabilistic interpretation of nonlinear evolution equations. Owing to the discontinuity of the drift coefficient, the corresponding ordinary differential equations are ill-posed. Therefore, the small noise limit of order-based diffusion processes is not covered by the classical Freidlin-Wentzell theory. The description of this limit is the purpose of this article.

We first give a complete analysis of the two-particle case. Despite its apparent simplicity, the small noise limit of such a system already exhibits various behaviours. In particular, depending on the drift coefficient, the particles can either stick into a cluster, the velocity of which is determined by elementary computations, or drift away from each other at constant velocity, in a random ordering. The persistence of randomness in the small noise limit is of the very same nature as in the pioneering works by Veretennikov (Mat. Zametki, 1983) and Bafico and Baldi (Stochastics, 1981) concerning the so-called Peano phenomenon.

In the case of rank-based processes, we use a simple convexity argument to prove that the small noise limit is described by the sticky particle dynamics introduced by Brenier and Grenier (SIAM J. Numer. Anal., 1998), where particles travel at constant velocity between collisions, at which they stick together. In the general case of order-based processes, we give a sufficient condition on the drift for all the particles to aggregate into a single cluster, and compute the velocity of this cluster. Our argument consists in turning the study of the small noise limit into the study of the long time behaviour of a suitably rescaled process, and then exhibiting a Lyapunov functional for this rescaled process.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2014-03-05
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/2906
 
10. Identifier Digital Object Identifier 10.1214/EJP.v19-2906
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 19
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.