Indexing metadata

Fractional smoothness of functionals of diffusion processes under a change of measure


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Fractional smoothness of functionals of diffusion processes under a change of measure
 
2. Creator Author's name, affiliation, country Stefan Geiss; University of Innsbruck; Austria
 
2. Creator Author's name, affiliation, country Emmanuel Gobet; École Polytechnique; France
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Parabolic PDE; Qualitative properties of solutions; Diffusion; Interpolation
 
3. Subject Subject classification 60H30; 46B70; 35K10; 35Bxx
 
4. Description Abstract

Let $v:[0,T]\times {\mathbf R}^d \to {\mathbf R}$ be the solution of the parabolic backward equation $$\partial_t v + (1/2) \sum_{i,j} [\sigma \sigma^\top]_{i,j} \partial_{x_i}\partial_{x_j}v+ \sum_{i} b_i \partial_{x_i}v + kv =0$$ with terminal condition $g$, where the coefficients are time-and state-dependent, and satisfy certain regularity assumptions. Let $X = (X_t)_{t\in [0,T]}$ be the associated ${\mathbf R}^d$-valued diffusion process on some appropriate $(\Omega,{\mathcal F},{\mathbb Q})$. For $p\in [2,\infty)$ and a measure $d{\mathbb P}=\lambda_T d{\mathbb Q}$, where $\lambda_T$ satisfies the Muckenhoupt condition $A_p$, we relate the behavior of \[  \|g(X_T)-{\mathbf E}_{\mathbb P}(g(X_T)|{\mathcal F}_t) \|_{L_p({\mathbb P})}, \quad     \|\nabla v(t,X_t)  \|_{L_p({\mathbb P})},           \quad    \|D^2 v(t,X_t)  \|_{L_p({\mathbb P})} \]to each other, where $D^2v:=(\partial_{x_i}\partial_{x_j}v)_{i,j}$ is the Hessian matrix.

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) Academy of Finland
 
7. Date (YYYY-MM-DD) 2014-06-13
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/2786
 
10. Identifier Digital Object Identifier 10.1214/ECP.v19-2786
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 19
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.