Approximating the epidemic curve
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Approximating the epidemic curve |
2. | Creator | Author's name, affiliation, country | Andrew David Barbour; Universität Zürich; Switzerland |
2. | Creator | Author's name, affiliation, country | Gesine Reinert; University of Oxford; United Kingdom |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Epidemics, Reed--Frost, configuration model, deterministic approximation, branching processes |
3. | Subject | Subject classification | 92H30, 60K35, 60J85 |
4. | Description | Abstract | Many models of epidemic spread have a common qualitative structure. The numbers of infected individuals during the initial stages of an epidemic can be well approximated by a branching process, after which the proportion of individuals that are susceptible follows a more or less deterministic course. In this paper, we show that both of these features are consequences of assuming a locally branching structure in the models, and that the deterministic course can itself be determined from the distribution of the limiting random variable associated with the backward, susceptibility branching process. Examples considered includea stochastic version of the Kermack & McKendrick model, the Reed-Frost model, and the Volz configuration model. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | Australian Research Council (ARC); Engineering and Physical Sciences Research Council (EPSRC) |
7. | Date | (YYYY-MM-DD) | 2013-05-16 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/2557 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v18-2557 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 18 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|