Indexing metadata

Path-properties of the tree-valued Fleming–Viot process


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Path-properties of the tree-valued Fleming–Viot process
 
2. Creator Author's name, affiliation, country Andrej Depperschmidt; University of Freiburg; Germany
 
2. Creator Author's name, affiliation, country Andreas Greven; University of Erlangen; Germany
 
2. Creator Author's name, affiliation, country Peter Pfaffelhuber; University of Freiburg; Germany
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Marked tree-valued Fleming–Viot process, path properties, selection, mutation, Kingman coalescent
 
3. Subject Subject classification Primary: 60K35, 60J25; secondary 60J68, 92D10
 
4. Description Abstract

We consider the tree-valued Fleming–Viot process, (Xt )t≥0 , with mutation and selection. This process models the stochastic evolution of the genealogies and (allelic) types under resampling, mutation and selection in the population currently alive in the limit of infinitely large populations. Genealogies and types are described by (isometry classes of) marked metric measure spaces. The long-time limit of the neutral tree-valued Fleming–Viot dynamics is an equilibrium given via the marked metric measure space associated with the Kingman coalescent.


In the present paper we pursue two closely linked goals. First, we show that two well-known properties of the Fleming–Viot genealogies at fixed time t arising from the properties of the dual, namely the Kingman coalescent, hold for the whole path. These properties are related to the geometry of the family tree close to its leaves. In particular we consider the number and the size of subfamilies whose individuals are not further than ε apart in the limit ε → 0. Second, we answer two open questions about the sample paths of the tree-valued Fleming–Viot process. We show that for all t > 0 almost surely the marked metric measure space Xt has no atoms and admits a mark function. The latter property means that all individuals in the tree-valued Fleming–Viot process can uniquely be assigned a type. All main results are proven for the neutral case and then carried over to selective cases via Girsanov’s formula giving absolute continuity.

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) DFG
 
7. Date (YYYY-MM-DD) 2013-09-19
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/2514
 
10. Identifier Digital Object Identifier 10.1214/EJP.v18-2514
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 18
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.