Indexing metadata

Height representation of XOR-Ising loops via bipartite dimers


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Height representation of XOR-Ising loops via bipartite dimers
 
2. Creator Author's name, affiliation, country Cédric Boutillier; UPMC; France
 
2. Creator Author's name, affiliation, country Béatrice de Tilière; UPMC; France
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Ising model, bipartite dimer model, height function, homology theory
 
3. Subject Subject classification 52C20; 55N33; 60K35; 82B20; 82B23
 
4. Description Abstract The XOR-Ising model on a graph consists of random spin configurations on vertices of the graph obtained by taking the product at each vertex of the spins of two independent Ising models. In this paper, we explicitly relate loop configurations of the XOR-Ising model and those of a dimer model living on a decorated, bipartite version of the Ising graph. This result is proved for graphs embedded in compact surfaces of genus $g$. Using this fact, we then prove that XOR-Ising loops have the same law as level lines of the height function of this bipartite dimer model. At criticality, the height function is known to converge weakly in distribution to $\frac{1}{\sqrt{\pi}}$ a Gaussian free field. As a consequence, results of this paper shed a light on the occurrence of the Gaussian free field in the XOR-Ising model. In particular, they provide a step forward in the solution of Wilson's conjecture, stating that the scaling limit of XOR-Ising loops are level lines of the Gaussian free field.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) ANR
 
7. Date (YYYY-MM-DD) 2014-09-04
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/2449
 
10. Identifier Digital Object Identifier 10.1214/EJP.v19-2449
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 19
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.