Indexing metadata

A local limit theorem for random walks in balanced environments


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document A local limit theorem for random walks in balanced environments
 
2. Creator Author's name, affiliation, country Mikko Stenlund; University of Helsinki; Finland
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Balanced random environment, local limit theorem, Nash inequality
 
3. Subject Subject classification 60K37; 60F15, 82C41, 82D30, 35K15
 
4. Description Abstract Central limit theorems for random walks in quenched random environments have attracted plenty of attention in the past years. More recently still, finer local limit theorems - yielding a Gaussian density multiplied by a highly oscillatory modulating factor - for such models have been obtained. In the one-dimensional nearest-neighbor case with i.i.d. transition probabilities, local limits of uniformly elliptic ballistic walks are now well understood. We complete the picture by proving a similar result for the only recurrent case, namely the balanced one, in which such a walk is diffusive. The method of proof is, out of necessity, entirely different from the ballistic case.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) Academy of Finland
 
7. Date (YYYY-MM-DD) 2013-03-08
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/2336
 
10. Identifier Digital Object Identifier 10.1214/ECP.v18-2336
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 18
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.