Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes |
2. | Creator | Author's name, affiliation, country | Ioannis Kontoyiannis; Brown University |
2. | Creator | Author's name, affiliation, country | Sean P Meyn; University of Illinois, Urbana-Champaign |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Markov process, large deviations, entropy, Lyapunov function, empirical measures, nonlinear generator, large deviations principle |
4. | Description | Abstract | In this paper we continue the investigation of the spectral theory and exponential asymptotics of primarily discrete-time Markov processes, following Kontoyiannis and Meyn (2003). We introduce a new family of nonlinear Lyapunov drift criteria, which characterize distinct subclasses of geometrically ergodic Markov processes in terms of simple inequalities for the nonlinear generator. We concentrate primarily on the class of multiplicatively regular Markov processes, which are characterized via simple conditions similar to (but weaker than) those of Donsker-Varadhan. For any such process $\{\Phi(t)\}$ with transition kernel $P$ on a general state space $X$, the following are obtained. Spectral Theory: For a large class of (possibly unbounded) functionals $F$ on $X$, the kernel $\hat P(x,dy) = e^{F(x)} P(x,dy)$ has a discrete spectrum in an appropriately defined Banach space. It follows that there exists a "maximal," well-behaved solution to the "multiplicative Poisson equation," defined as an eigenvalue problem for $\hat P$. Multiplicative Mean Ergodic Theorem: Consider the partial sums of this process with respect to any one of the functionals $F$ considered above. The normalized mean of their moment generating function (and not the logarithm of the mean) converges to the above maximal eigenfunction exponentially fast. Multiplicative regularity: The Lyapunov drift criterion under which our results are derived is equivalent to the existence of regeneration times with finite exponential moments for the above partial sums. Large Deviations: The sequence of empirical measures of the process satisfies a large deviations principle in a topology finer that the usual tau-topology, generated by the above class of functionals. The rate function of this LDP is the convex dual of logarithm of the above maximal eigenvalue, and it is shown to coincide with the Donsker-Varadhan rate function in terms of relative entropy. Exact Large Deviations Asymptotics: The above partial sums are shown to satisfy an exact large deviations expansion, analogous to that obtained by Bahadur and Ranga Rao for independent random variables. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | NSF, Sloan Foundation |
7. | Date | (YYYY-MM-DD) | 2005-02-24 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/231 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v10-231 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 10 |
12. | Language | English=en | |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|