Large deviation results for random walks conditioned to stay positive
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | Large deviation results for random walks conditioned to stay positive |
2. | Creator | Author's name, affiliation, country | Ronald A Doney; University of Manchester; United Kingdom |
2. | Creator | Author's name, affiliation, country | Elinor Mair Jones; University of Leicester; United Kingdom |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | Limit theorems; Random walks; Stable laws |
3. | Subject | Subject classification | 60G50; 60G52; 60E07 |
4. | Description | Abstract | Let $X_{1},X_{2},...$ denote independent, identically distributed random variables with common distribution $F$, and $S$ the corresponding random walk with $\rho :=\lim_{n\rightarrow \infty }P(S_{n}>0)$ and $\tau :=\inf \{n\geq 1:S_{n}\leq 0\}$. We assume that $X$ is in the domain of attraction of an $\alpha $-stable law, and that $P(X\in \lbrack x,x+\Delta ))$ is regularly varying at infinity, for fixed $\Delta >0$. Under these conditions, we find an estimate for $P(S_{n}\in \lbrack x,x+\Delta )|\tau >n)$, which holds uniformly as $x/c_{n}\rightarrow \infty $, for a specified norming sequence $c_{n}$.
This result is of particular interest as it is related to the bivariate ladder height process $((T_{n},H_{n}),n\geq 0)$, where $T_{r}$ is the $r$th strict increasing ladder time, and $H_{r}=S_{T_{r}}$ the corresponding ladder height. The bivariate renewal mass function $g(n,dx)=\sum_{r=0}^{\infty }P(T_{r}=n,H_{r}\in dx)$ can then be written as $g(n,dx)=P(S_{n}\in dx|\tau >n)P(\tau >n)$, and since the behaviour of $P(\tau >n)$ is known for asymptotically stable random walks, our results can be rephrased as large deviation estimates of $g(n,[x,x+\Delta))$. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2012-08-28 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ecp.ejpecp.org/article/view/2282 |
10. | Identifier | Digital Object Identifier | 10.1214/ECP.v17-2282 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Communications in Probability; Vol 17 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|