Indexing metadata

Concentration inequalities for order statistics


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Concentration inequalities for order statistics
 
2. Creator Author's name, affiliation, country Stéphane Vincent Boucheron; Université Paris-Diderot; France
 
2. Creator Author's name, affiliation, country Maud Thomas; Université Paris-Diderot; France
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) concentration inequalities;entropy method;order statistics
 
3. Subject Subject classification 60E15;60F10;60G70;62G30;62G32
 
4. Description Abstract This note describes non-asymptotic variance and tail bounds for order statistics of samples of independent identically distributed random variables. When the sampling distribution belongs to a maximum domain of attraction, these bounds are checked to be asymptotically tight. When the sampling distribution has a non decreasing hazard rate, we derive an exponential Efron-Stein inequality for order statistics, that is  an inequality connecting the logarithmic moment generating function of order statistics with exponential moments of Efron-Stein (jackknife) estimates of variance. This connection is used to derive variance and tail bounds for order statistics of Gaussian samples that are not within the scope of the Gaussian concentration inequality. Proofs are elementary and combine Rényi's representation of order statistics with the entropy approach to concentration of measure popularized by M. Ledoux.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2012-11-01
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/2210
 
10. Identifier Digital Object Identifier 10.1214/ECP.v17-2210
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 17
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.