On the optimal stopping of a one-dimensional diffusion
Dublin Core | PKP Metadata Items | Metadata for this Document | |
1. | Title | Title of document | On the optimal stopping of a one-dimensional diffusion |
2. | Creator | Author's name, affiliation, country | Damien Lamberton; Université Paris-Est Marne-la-Vallée |
2. | Creator | Author's name, affiliation, country | Mihail Zervos; London School of Economics |
3. | Subject | Discipline(s) | |
3. | Subject | Keyword(s) | optimal stopping ; one-dimensional diffusions ; additive functionals ; potentials ; variational inequalities |
3. | Subject | Subject classification | 60G40 ; 60J55 ; 60J60 ; 49L20 |
4. | Description | Abstract | We consider the one-dimensional diffusion $X$ that satisfies the stochastic differential equation in the interior $int(I) = \mbox{} ]\alpha, \beta[$ of a given interval $I \subseteq [-\infty, \infty]$, where $b, \sigma: int(I)\rightarrow \mathbb{R}$ are Borel-measurable functions and $W$ is a standard one-dimensional Brownian motion. We allow for the endpoints $\alpha$ and $\beta$ to be inaccessibl or absorbing. Given a Borel-measurable function $r: I \rightarrow \mathbb{R}_+$ that is uniformly bounded away from 0, we establish a new analytic representation of the $r(\cdot)$ potential of a continuous additive functional of $X$. Furthermore, we derive a complete characterisation of differences of two convex functions in terms of appropriate $r(\cdot)$-potentials, and we show that a function $F: I \rightarrow \mathbb{R}_+$ is $r(\cdot)$-excessive if and only if it is the difference of two convex functions and $- \bigl(\frac{1}{2} \sigma ^2 F'' + bF' - rF \bigr)$ is a positive measure. We use these results to study the optimal stopping problem that aims at maximising the performance index over all stopping times $\tau$, where $f: I \rightarrow \mathbb{R}_+$ is a Borel-measurable function that may be unbounded. We derive a simple necessary and sufficient condition for the value function $v$ of this problem to be real valued. In the presence of this condition, we show that $v$ is the difference of two convex functions, and we prove that it satisfies the variational inequality $$ in the sense of distributions, where $\overline{f}$ identifies wit the upper semicontinuous envelope of $f$ in the interior $int(I)$ of $I$. Conversely, we derive a simple necessary and sufficient condition for a solution to the equation above to identify with the value function $v$. Furthermore, we establish several other characterisations of the solution to the optimal stopping problem, including a generalisation of the so-called ``principle of smooth fit''. In our analysis, we also make a construction that is concerned with pasting weak solutions to the SDE at appropriate hitting times, which is an issue of fundamental importance to dynamic programming. |
5. | Publisher | Organizing agency, location | |
6. | Contributor | Sponsor(s) | |
7. | Date | (YYYY-MM-DD) | 2013-03-09 |
8. | Type | Status & genre | Peer-reviewed Article |
8. | Type | Type | |
9. | Format | File format | |
10. | Identifier | Uniform Resource Identifier | http://ejp.ejpecp.org/article/view/2182 |
10. | Identifier | Digital Object Identifier | 10.1214/EJP.v18-2182 |
11. | Source | Journal/conference title; vol., no. (year) | Electronic Journal of Probability; Vol 18 |
12. | Language | English=en | en |
14. | Coverage | Geo-spatial location, chronological period, research sample (gender, age, etc.) | |
15. | Rights | Copyright and permissions | The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available. Summary of the Creative Commons Attribution License You are free
|