Indexing metadata

The effect of small quenched noise on connectivity properties of random interlacements


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document The effect of small quenched noise on connectivity properties of random interlacements
 
2. Creator Author's name, affiliation, country Balázs Ráth; The University of British Columbia; Canada
 
2. Creator Author's name, affiliation, country Artëm Sapozhnikov; Max-Planck Institute for Mathematics in the Sciences; Germany
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Random interlacements; Bernoulli percolation; slab; vacant set; quenched noise; long-range correlations; transience
 
3. Subject Subject classification 60K35; 82B43
 
4. Description Abstract

Random interlacements (at level $u$) is a one parameter family of random subsets of $\mathbb{Z}^d$ introduced by Sznitman. The vacant set at level $u$ is the complement of the random interlacement at level $u$. While the random interlacement induces a connected subgraph of $\mathbb{Z}^d$ for all levels $u$, the vacant set has a non-trivial phase transition in $u$.

In this paper, we study the effect of small quenched noise on connectivity properties of the random interlacement and the vacant set. For a positive $\varepsilon$, we allow each vertex of the random interlacement (referred to as occupied) to become vacant, and each vertex of the vacant set to become occupied with probability $\varepsilon$, independently of the randomness of the interlacement, and independently for different vertices. We prove that for any $d\geq 3$ and $u>0$, almost surely, the perturbed random interlacement percolates for small enough noise parameter $\varepsilon$. In fact, we prove the stronger statement that Bernoulli percolation on the random interlacement graph has a non-trivial phase transition in wide enough slabs. As a byproduct, we show that any electric network with i.i.d. positive resistances on the interlacement graph is transient. As for the vacant set, we show that for any $d\geq 3$, there is still a non trivial phase transition in $u$ when the noise parameter $\varepsilon$ is small enough, and we give explicit upper and lower bounds on the value of the critical threshold, when $\varepsilon\to 0$.

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) ERC-2009-AdG 245728-RWPERCRI
 
7. Date (YYYY-MM-DD) 2013-01-07
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/2122
 
10. Identifier Digital Object Identifier 10.1214/EJP.v18-2122
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 18
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.