Indexing metadata

Sharpness of KKL on Schreier graphs


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Sharpness of KKL on Schreier graphs
 
2. Creator Author's name, affiliation, country Ryan O'Donnell; Carnegie Mellon University; United States
 
2. Creator Author's name, affiliation, country Karl Wimmer; Duquesne University; United States
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) boolean functions; KKL; Cayley graphs; Schreier graphs; log-sobolev constant; Orlicz norms
 
3. Subject Subject classification 68Q87; 28A99; 05A20
 
4. Description Abstract

Recently, the Kahn-Kalai-Linial (KKL) Theorem on influences of functions on $\{0,1\}^n$ was extended to the setting of functions on Schreier graphs.  Specifically, it was shown that for an undirected Schreier graph $\text{Sch}(G,X,U)$ with log Sobolev constant $\rho$ and generating set $U$ closed under conjugation, if $f : X \to \{0,1\}$ then $$\mathcal{E}[f] \gtrsim \log(1/\text{MaxInf}[f]) \cdot \rho \cdot {\bf Var}[f].$$ Here $\mathcal{E}[f]$ denotes the average of $f$'s influences, and $\text{MaxInf}[f]$ denotes their maximum. In this work we investigate the extent to which this result is sharp.  We show:

1. The condition that $U$ is closed under conjugation cannot in general be eliminated.

2. The log-Sobolev constant cannot  be replaced by the modified log-Sobolev constant.

3. The result cannot be improved for the Cayley graph on $S_n$ with transpositions.

4. The result can be improved for the Cayley graph on $\mathbb{Z}_m^n$ with standard generators.

5. Talagrand's strengthened version of KKL also holds in the Schreier graph setting: $$\mathrm{avg}_{u \in U} \{\mathrm{Inf}_u[f]/\log(1/\mathrm{Inf}_u[f]) \} \gtrsim \rho \cdot {\bf Var}[f].$$

 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) NSF, BSF, Sloan Foundation
 
7. Date (YYYY-MM-DD) 2013-03-02
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ecp.ejpecp.org/article/view/1961
 
10. Identifier Digital Object Identifier 10.1214/ECP.v18-1961
 
11. Source Journal/conference title; vol., no. (year) Electronic Communications in Probability; Vol 18
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.