Indexing metadata

Greedy polyominoes and first-passage times on random Voronoi tilings


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Greedy polyominoes and first-passage times on random Voronoi tilings
 
2. Creator Author's name, affiliation, country Raphaël Rossignol; Université Joseph Fourier Grenoble 1; France
 
2. Creator Author's name, affiliation, country Leandro P. R. Pimentel; Federal University of Rio de Janeiro, Brazil; Brazil
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) Random Voronoi tiling; Delaunay graph; First passage percolation; connective constant; greedy animal; random walk
 
3. Subject Subject classification 60K35; 60D05
 
4. Description Abstract Let $\mathcal{N}$ be distributed as a Poisson random set on $\mathbb{R}^d$, $d\geq 2$, with intensity comparable to the Lebesgue measure. Consider the Voronoi tiling of $\mathbb{R}^d$, $\{C_v\}_{v\in \mathcal{N}}$, where $C_v$ is composed of points $\mathbf{x}\in\mathbb{R}^d$ that are closer to $v\in\mathcal{N}$ than to any other $v'\in\mathcal{N}$.  A polyomino $\mathcal{P}$ of size $n$ is a connected union (in the usual $\mathbb{R}^d$ topological sense) of $n$ tiles, and we denote by $\Pi_n$ the collection of all polyominos $\mathcal{P}$ of size $n$ containing the origin. Assume that the weight of a Voronoi tile $C_v$ is given by $F(C_v)$, where $F$ is a nonnegative functional on Voronoi tiles. In this paper we investigate for some functionals $F$, mainly when $F(C_v)$ is a polynomial function of the number of faces of $C_v$,  the tail behavior of the maximal weight among polyominoes in $\Pi_n$: $F_n=F_n(\mathcal{N}):=\max_{\mathcal{P}\in\Pi_n} \sum_{v\in \mathcal{P}} F(C_v)$. Next we apply our results to study self-avoiding paths, first-passage percolation models and the stabbing number on the dual graph, named the Delaunay triangulation. As the main application we show that first passage percolation has at most linear variance.
 
5. Publisher Organizing agency, location
 
6. Contributor Sponsor(s) Swiss National Science Foundation, Fundação de Amparo a Pesquisa do Estado de São Paulo and The Netherlands Organisation for Scientific Research.
 
7. Date (YYYY-MM-DD) 2012-02-01
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier http://ejp.ejpecp.org/article/view/1788
 
10. Identifier Digital Object Identifier 10.1214/EJP.v17-1788
 
11. Source Journal/conference title; vol., no. (year) Electronic Journal of Probability; Vol 17
 
12. Language English=en en
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions The Electronic Journal of Probability applies the Creative Commons Attribution License (CCAL) to all articles we publish in this journal. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles published in EJP, so long as the original authors and source are credited. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Summary of the Creative Commons Attribution License

You are free
  • to copy, distribute, display, and perform the work
  • to make derivative works
  • to make commercial use of the work
under the following condition of Attribution: others must attribute the work if displayed on the web or stored in any electronic archive by making a link back to the website of EJP via its Digital Object Identifier (DOI), or if published in other media by acknowledging prior publication in this Journal with a precise citation including the DOI. For any further reuse or distribution, the same terms apply. Any of these conditions can be waived by permission of the Corresponding Author.